LCOV - code coverage report
Current view: top level - src/vendor/xxhash - xxhash.h (source / functions) Coverage Total Hit
Test: coverage.info Lines: 31.3 % 886 277
Test Date: 2025-10-15 21:43:52 Functions: 34.4 % 122 42

            Line data    Source code
       1              : /*
       2              :  * xxHash - Extremely Fast Hash algorithm
       3              :  * Header File
       4              :  * Copyright (C) 2012-2021 Yann Collet
       5              :  *
       6              :  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
       7              :  *
       8              :  * Redistribution and use in source and binary forms, with or without
       9              :  * modification, are permitted provided that the following conditions are
      10              :  * met:
      11              :  *
      12              :  *    * Redistributions of source code must retain the above copyright
      13              :  *      notice, this list of conditions and the following disclaimer.
      14              :  *    * Redistributions in binary form must reproduce the above
      15              :  *      copyright notice, this list of conditions and the following disclaimer
      16              :  *      in the documentation and/or other materials provided with the
      17              :  *      distribution.
      18              :  *
      19              :  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      20              :  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      21              :  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      22              :  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      23              :  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      24              :  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      25              :  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      26              :  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      27              :  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      28              :  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      29              :  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30              :  *
      31              :  * You can contact the author at:
      32              :  *   - xxHash homepage: https://www.xxhash.com
      33              :  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
      34              :  */
      35              : 
      36              : /*!
      37              :  * @mainpage xxHash
      38              :  *
      39              :  * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
      40              :  * limits.
      41              :  *
      42              :  * It is proposed in four flavors, in three families:
      43              :  * 1. @ref XXH32_family
      44              :  *   - Classic 32-bit hash function. Simple, compact, and runs on almost all
      45              :  *     32-bit and 64-bit systems.
      46              :  * 2. @ref XXH64_family
      47              :  *   - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
      48              :  *     64-bit systems (but _not_ 32-bit systems).
      49              :  * 3. @ref XXH3_family
      50              :  *   - Modern 64-bit and 128-bit hash function family which features improved
      51              :  *     strength and performance across the board, especially on smaller data.
      52              :  *     It benefits greatly from SIMD and 64-bit without requiring it.
      53              :  *
      54              :  * Benchmarks
      55              :  * ---
      56              :  * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
      57              :  * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
      58              :  *
      59              :  * | Hash Name            | ISA ext | Width | Large Data Speed | Small Data Velocity |
      60              :  * | -------------------- | ------- | ----: | ---------------: | ------------------: |
      61              :  * | XXH3_64bits()        | @b AVX2 |    64 |        59.4 GB/s |               133.1 |
      62              :  * | MeowHash             | AES-NI  |   128 |        58.2 GB/s |                52.5 |
      63              :  * | XXH3_128bits()       | @b AVX2 |   128 |        57.9 GB/s |               118.1 |
      64              :  * | CLHash               | PCLMUL  |    64 |        37.1 GB/s |                58.1 |
      65              :  * | XXH3_64bits()        | @b SSE2 |    64 |        31.5 GB/s |               133.1 |
      66              :  * | XXH3_128bits()       | @b SSE2 |   128 |        29.6 GB/s |               118.1 |
      67              :  * | RAM sequential read  |         |   N/A |        28.0 GB/s |                 N/A |
      68              :  * | ahash                | AES-NI  |    64 |        22.5 GB/s |               107.2 |
      69              :  * | City64               |         |    64 |        22.0 GB/s |                76.6 |
      70              :  * | T1ha2                |         |    64 |        22.0 GB/s |                99.0 |
      71              :  * | City128              |         |   128 |        21.7 GB/s |                57.7 |
      72              :  * | FarmHash             | AES-NI  |    64 |        21.3 GB/s |                71.9 |
      73              :  * | XXH64()              |         |    64 |        19.4 GB/s |                71.0 |
      74              :  * | SpookyHash           |         |    64 |        19.3 GB/s |                53.2 |
      75              :  * | Mum                  |         |    64 |        18.0 GB/s |                67.0 |
      76              :  * | CRC32C               | SSE4.2  |    32 |        13.0 GB/s |                57.9 |
      77              :  * | XXH32()              |         |    32 |         9.7 GB/s |                71.9 |
      78              :  * | City32               |         |    32 |         9.1 GB/s |                66.0 |
      79              :  * | Blake3*              | @b AVX2 |   256 |         4.4 GB/s |                 8.1 |
      80              :  * | Murmur3              |         |    32 |         3.9 GB/s |                56.1 |
      81              :  * | SipHash*             |         |    64 |         3.0 GB/s |                43.2 |
      82              :  * | Blake3*              | @b SSE2 |   256 |         2.4 GB/s |                 8.1 |
      83              :  * | HighwayHash          |         |    64 |         1.4 GB/s |                 6.0 |
      84              :  * | FNV64                |         |    64 |         1.2 GB/s |                62.7 |
      85              :  * | Blake2*              |         |   256 |         1.1 GB/s |                 5.1 |
      86              :  * | SHA1*                |         |   160 |         0.8 GB/s |                 5.6 |
      87              :  * | MD5*                 |         |   128 |         0.6 GB/s |                 7.8 |
      88              :  * @note
      89              :  *   - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
      90              :  *     even though it is mandatory on x64.
      91              :  *   - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
      92              :  *     by modern standards.
      93              :  *   - Small data velocity is a rough average of algorithm's efficiency for small
      94              :  *     data. For more accurate information, see the wiki.
      95              :  *   - More benchmarks and strength tests are found on the wiki:
      96              :  *         https://github.com/Cyan4973/xxHash/wiki
      97              :  *
      98              :  * Usage
      99              :  * ------
     100              :  * All xxHash variants use a similar API. Changing the algorithm is a trivial
     101              :  * substitution.
     102              :  *
     103              :  * @pre
     104              :  *    For functions which take an input and length parameter, the following
     105              :  *    requirements are assumed:
     106              :  *    - The range from [`input`, `input + length`) is valid, readable memory.
     107              :  *      - The only exception is if the `length` is `0`, `input` may be `NULL`.
     108              :  *    - For C++, the objects must have the *TriviallyCopyable* property, as the
     109              :  *      functions access bytes directly as if it was an array of `unsigned char`.
     110              :  *
     111              :  * @anchor single_shot_example
     112              :  * **Single Shot**
     113              :  *
     114              :  * These functions are stateless functions which hash a contiguous block of memory,
     115              :  * immediately returning the result. They are the easiest and usually the fastest
     116              :  * option.
     117              :  *
     118              :  * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
     119              :  *
     120              :  * @code{.c}
     121              :  *   #include <string.h>
     122              :  *   #include "xxhash.h"
     123              :  *
     124              :  *   // Example for a function which hashes a null terminated string with XXH32().
     125              :  *   XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
     126              :  *   {
     127              :  *       // NULL pointers are only valid if the length is zero
     128              :  *       size_t length = (string == NULL) ? 0 : strlen(string);
     129              :  *       return XXH32(string, length, seed);
     130              :  *   }
     131              :  * @endcode
     132              :  *
     133              :  * @anchor streaming_example
     134              :  * **Streaming**
     135              :  *
     136              :  * These groups of functions allow incremental hashing of unknown size, even
     137              :  * more than what would fit in a size_t.
     138              :  *
     139              :  * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
     140              :  *
     141              :  * @code{.c}
     142              :  *   #include <stdio.h>
     143              :  *   #include <assert.h>
     144              :  *   #include "xxhash.h"
     145              :  *   // Example for a function which hashes a FILE incrementally with XXH3_64bits().
     146              :  *   XXH64_hash_t hashFile(FILE* f)
     147              :  *   {
     148              :  *       // Allocate a state struct. Do not just use malloc() or new.
     149              :  *       XXH3_state_t* state = XXH3_createState();
     150              :  *       assert(state != NULL && "Out of memory!");
     151              :  *       // Reset the state to start a new hashing session.
     152              :  *       XXH3_64bits_reset(state);
     153              :  *       char buffer[4096];
     154              :  *       size_t count;
     155              :  *       // Read the file in chunks
     156              :  *       while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
     157              :  *           // Run update() as many times as necessary to process the data
     158              :  *           XXH3_64bits_update(state, buffer, count);
     159              :  *       }
     160              :  *       // Retrieve the finalized hash. This will not change the state.
     161              :  *       XXH64_hash_t result = XXH3_64bits_digest(state);
     162              :  *       // Free the state. Do not use free().
     163              :  *       XXH3_freeState(state);
     164              :  *       return result;
     165              :  *   }
     166              :  * @endcode
     167              :  *
     168              :  * @file xxhash.h
     169              :  * xxHash prototypes and implementation
     170              :  */
     171              : 
     172              : #if defined (__cplusplus)
     173              : extern "C" {
     174              : #endif
     175              : 
     176              : /* ****************************
     177              :  *  INLINE mode
     178              :  ******************************/
     179              : /*!
     180              :  * @defgroup public Public API
     181              :  * Contains details on the public xxHash functions.
     182              :  * @{
     183              :  */
     184              : #ifdef XXH_DOXYGEN
     185              : /*!
     186              :  * @brief Gives access to internal state declaration, required for static allocation.
     187              :  *
     188              :  * Incompatible with dynamic linking, due to risks of ABI changes.
     189              :  *
     190              :  * Usage:
     191              :  * @code{.c}
     192              :  *     #define XXH_STATIC_LINKING_ONLY
     193              :  *     #include "xxhash.h"
     194              :  * @endcode
     195              :  */
     196              : #  define XXH_STATIC_LINKING_ONLY
     197              : /* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
     198              : 
     199              : /*!
     200              :  * @brief Gives access to internal definitions.
     201              :  *
     202              :  * Usage:
     203              :  * @code{.c}
     204              :  *     #define XXH_STATIC_LINKING_ONLY
     205              :  *     #define XXH_IMPLEMENTATION
     206              :  *     #include "xxhash.h"
     207              :  * @endcode
     208              :  */
     209              : #  define XXH_IMPLEMENTATION
     210              : /* Do not undef XXH_IMPLEMENTATION for Doxygen */
     211              : 
     212              : /*!
     213              :  * @brief Exposes the implementation and marks all functions as `inline`.
     214              :  *
     215              :  * Use these build macros to inline xxhash into the target unit.
     216              :  * Inlining improves performance on small inputs, especially when the length is
     217              :  * expressed as a compile-time constant:
     218              :  *
     219              :  *  https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
     220              :  *
     221              :  * It also keeps xxHash symbols private to the unit, so they are not exported.
     222              :  *
     223              :  * Usage:
     224              :  * @code{.c}
     225              :  *     #define XXH_INLINE_ALL
     226              :  *     #include "xxhash.h"
     227              :  * @endcode
     228              :  * Do not compile and link xxhash.o as a separate object, as it is not useful.
     229              :  */
     230              : #  define XXH_INLINE_ALL
     231              : #  undef XXH_INLINE_ALL
     232              : /*!
     233              :  * @brief Exposes the implementation without marking functions as inline.
     234              :  */
     235              : #  define XXH_PRIVATE_API
     236              : #  undef XXH_PRIVATE_API
     237              : /*!
     238              :  * @brief Emulate a namespace by transparently prefixing all symbols.
     239              :  *
     240              :  * If you want to include _and expose_ xxHash functions from within your own
     241              :  * library, but also want to avoid symbol collisions with other libraries which
     242              :  * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
     243              :  * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
     244              :  * (therefore, avoid empty or numeric values).
     245              :  *
     246              :  * Note that no change is required within the calling program as long as it
     247              :  * includes `xxhash.h`: Regular symbol names will be automatically translated
     248              :  * by this header.
     249              :  */
     250              : #  define XXH_NAMESPACE /* YOUR NAME HERE */
     251              : #  undef XXH_NAMESPACE
     252              : #endif
     253              : 
     254              : #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
     255              :     && !defined(XXH_INLINE_ALL_31684351384)
     256              :    /* this section should be traversed only once */
     257              : #  define XXH_INLINE_ALL_31684351384
     258              :    /* give access to the advanced API, required to compile implementations */
     259              : #  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
     260              : #  define XXH_STATIC_LINKING_ONLY
     261              :    /* make all functions private */
     262              : #  undef XXH_PUBLIC_API
     263              : #  if defined(__GNUC__)
     264              : #    define XXH_PUBLIC_API static __inline __attribute__((unused))
     265              : #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
     266              : #    define XXH_PUBLIC_API static inline
     267              : #  elif defined(_MSC_VER)
     268              : #    define XXH_PUBLIC_API static __inline
     269              : #  else
     270              :      /* note: this version may generate warnings for unused static functions */
     271              : #    define XXH_PUBLIC_API static
     272              : #  endif
     273              : 
     274              :    /*
     275              :     * This part deals with the special case where a unit wants to inline xxHash,
     276              :     * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
     277              :     * such as part of some previously included *.h header file.
     278              :     * Without further action, the new include would just be ignored,
     279              :     * and functions would effectively _not_ be inlined (silent failure).
     280              :     * The following macros solve this situation by prefixing all inlined names,
     281              :     * avoiding naming collision with previous inclusions.
     282              :     */
     283              :    /* Before that, we unconditionally #undef all symbols,
     284              :     * in case they were already defined with XXH_NAMESPACE.
     285              :     * They will then be redefined for XXH_INLINE_ALL
     286              :     */
     287              : #  undef XXH_versionNumber
     288              :     /* XXH32 */
     289              : #  undef XXH32
     290              : #  undef XXH32_createState
     291              : #  undef XXH32_freeState
     292              : #  undef XXH32_reset
     293              : #  undef XXH32_update
     294              : #  undef XXH32_digest
     295              : #  undef XXH32_copyState
     296              : #  undef XXH32_canonicalFromHash
     297              : #  undef XXH32_hashFromCanonical
     298              :     /* XXH64 */
     299              : #  undef XXH64
     300              : #  undef XXH64_createState
     301              : #  undef XXH64_freeState
     302              : #  undef XXH64_reset
     303              : #  undef XXH64_update
     304              : #  undef XXH64_digest
     305              : #  undef XXH64_copyState
     306              : #  undef XXH64_canonicalFromHash
     307              : #  undef XXH64_hashFromCanonical
     308              :     /* XXH3_64bits */
     309              : #  undef XXH3_64bits
     310              : #  undef XXH3_64bits_withSecret
     311              : #  undef XXH3_64bits_withSeed
     312              : #  undef XXH3_64bits_withSecretandSeed
     313              : #  undef XXH3_createState
     314              : #  undef XXH3_freeState
     315              : #  undef XXH3_copyState
     316              : #  undef XXH3_64bits_reset
     317              : #  undef XXH3_64bits_reset_withSeed
     318              : #  undef XXH3_64bits_reset_withSecret
     319              : #  undef XXH3_64bits_update
     320              : #  undef XXH3_64bits_digest
     321              : #  undef XXH3_generateSecret
     322              :     /* XXH3_128bits */
     323              : #  undef XXH128
     324              : #  undef XXH3_128bits
     325              : #  undef XXH3_128bits_withSeed
     326              : #  undef XXH3_128bits_withSecret
     327              : #  undef XXH3_128bits_reset
     328              : #  undef XXH3_128bits_reset_withSeed
     329              : #  undef XXH3_128bits_reset_withSecret
     330              : #  undef XXH3_128bits_reset_withSecretandSeed
     331              : #  undef XXH3_128bits_update
     332              : #  undef XXH3_128bits_digest
     333              : #  undef XXH128_isEqual
     334              : #  undef XXH128_cmp
     335              : #  undef XXH128_canonicalFromHash
     336              : #  undef XXH128_hashFromCanonical
     337              :     /* Finally, free the namespace itself */
     338              : #  undef XXH_NAMESPACE
     339              : 
     340              :     /* employ the namespace for XXH_INLINE_ALL */
     341              : #  define XXH_NAMESPACE XXH_INLINE_
     342              :    /*
     343              :     * Some identifiers (enums, type names) are not symbols,
     344              :     * but they must nonetheless be renamed to avoid redeclaration.
     345              :     * Alternative solution: do not redeclare them.
     346              :     * However, this requires some #ifdefs, and has a more dispersed impact.
     347              :     * Meanwhile, renaming can be achieved in a single place.
     348              :     */
     349              : #  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
     350              : #  define XXH_OK XXH_IPREF(XXH_OK)
     351              : #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
     352              : #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
     353              : #  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
     354              : #  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
     355              : #  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
     356              : #  define XXH32_state_s XXH_IPREF(XXH32_state_s)
     357              : #  define XXH32_state_t XXH_IPREF(XXH32_state_t)
     358              : #  define XXH64_state_s XXH_IPREF(XXH64_state_s)
     359              : #  define XXH64_state_t XXH_IPREF(XXH64_state_t)
     360              : #  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
     361              : #  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
     362              : #  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
     363              :    /* Ensure the header is parsed again, even if it was previously included */
     364              : #  undef XXHASH_H_5627135585666179
     365              : #  undef XXHASH_H_STATIC_13879238742
     366              : #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
     367              : 
     368              : /* ****************************************************************
     369              :  *  Stable API
     370              :  *****************************************************************/
     371              : #ifndef XXHASH_H_5627135585666179
     372              : #define XXHASH_H_5627135585666179 1
     373              : 
     374              : /*! @brief Marks a global symbol. */
     375              : #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
     376              : #  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
     377              : #    ifdef XXH_EXPORT
     378              : #      define XXH_PUBLIC_API __declspec(dllexport)
     379              : #    elif XXH_IMPORT
     380              : #      define XXH_PUBLIC_API __declspec(dllimport)
     381              : #    endif
     382              : #  else
     383              : #    define XXH_PUBLIC_API   /* do nothing */
     384              : #  endif
     385              : #endif
     386              : 
     387              : #ifdef XXH_NAMESPACE
     388              : #  define XXH_CAT(A,B) A##B
     389              : #  define XXH_NAME2(A,B) XXH_CAT(A,B)
     390              : #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
     391              : /* XXH32 */
     392              : #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
     393              : #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
     394              : #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
     395              : #  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
     396              : #  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
     397              : #  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
     398              : #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
     399              : #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
     400              : #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
     401              : /* XXH64 */
     402              : #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
     403              : #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
     404              : #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
     405              : #  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
     406              : #  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
     407              : #  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
     408              : #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
     409              : #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
     410              : #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
     411              : /* XXH3_64bits */
     412              : #  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
     413              : #  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
     414              : #  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
     415              : #  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
     416              : #  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
     417              : #  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
     418              : #  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
     419              : #  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
     420              : #  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
     421              : #  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
     422              : #  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
     423              : #  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
     424              : #  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
     425              : #  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
     426              : #  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
     427              : /* XXH3_128bits */
     428              : #  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
     429              : #  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
     430              : #  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
     431              : #  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
     432              : #  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
     433              : #  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
     434              : #  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
     435              : #  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
     436              : #  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
     437              : #  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
     438              : #  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
     439              : #  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
     440              : #  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
     441              : #  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
     442              : #  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
     443              : #endif
     444              : 
     445              : 
     446              : /* *************************************
     447              : *  Compiler specifics
     448              : ***************************************/
     449              : 
     450              : /* specific declaration modes for Windows */
     451              : #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
     452              : #  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
     453              : #    ifdef XXH_EXPORT
     454              : #      define XXH_PUBLIC_API __declspec(dllexport)
     455              : #    elif XXH_IMPORT
     456              : #      define XXH_PUBLIC_API __declspec(dllimport)
     457              : #    endif
     458              : #  else
     459              : #    define XXH_PUBLIC_API   /* do nothing */
     460              : #  endif
     461              : #endif
     462              : 
     463              : #if defined (__GNUC__)
     464              : # define XXH_CONSTF  __attribute__((const))
     465              : # define XXH_PUREF   __attribute__((pure))
     466              : # define XXH_MALLOCF __attribute__((malloc))
     467              : #else
     468              : # define XXH_CONSTF  /* disable */
     469              : # define XXH_PUREF
     470              : # define XXH_MALLOCF
     471              : #endif
     472              : 
     473              : /* *************************************
     474              : *  Version
     475              : ***************************************/
     476              : #define XXH_VERSION_MAJOR    0
     477              : #define XXH_VERSION_MINOR    8
     478              : #define XXH_VERSION_RELEASE  2
     479              : /*! @brief Version number, encoded as two digits each */
     480              : #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
     481              : 
     482              : /*!
     483              :  * @brief Obtains the xxHash version.
     484              :  *
     485              :  * This is mostly useful when xxHash is compiled as a shared library,
     486              :  * since the returned value comes from the library, as opposed to header file.
     487              :  *
     488              :  * @return @ref XXH_VERSION_NUMBER of the invoked library.
     489              :  */
     490              : XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
     491              : 
     492              : 
     493              : /* ****************************
     494              : *  Common basic types
     495              : ******************************/
     496              : #include <stddef.h>   /* size_t */
     497              : /*!
     498              :  * @brief Exit code for the streaming API.
     499              :  */
     500              : typedef enum {
     501              :     XXH_OK = 0, /*!< OK */
     502              :     XXH_ERROR   /*!< Error */
     503              : } XXH_errorcode;
     504              : 
     505              : 
     506              : /*-**********************************************************************
     507              : *  32-bit hash
     508              : ************************************************************************/
     509              : #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
     510              : /*!
     511              :  * @brief An unsigned 32-bit integer.
     512              :  *
     513              :  * Not necessarily defined to `uint32_t` but functionally equivalent.
     514              :  */
     515              : typedef uint32_t XXH32_hash_t;
     516              : 
     517              : #elif !defined (__VMS) \
     518              :   && (defined (__cplusplus) \
     519              :   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
     520              : #   include <stdint.h>
     521              :     typedef uint32_t XXH32_hash_t;
     522              : 
     523              : #else
     524              : #   include <limits.h>
     525              : #   if UINT_MAX == 0xFFFFFFFFUL
     526              :       typedef unsigned int XXH32_hash_t;
     527              : #   elif ULONG_MAX == 0xFFFFFFFFUL
     528              :       typedef unsigned long XXH32_hash_t;
     529              : #   else
     530              : #     error "unsupported platform: need a 32-bit type"
     531              : #   endif
     532              : #endif
     533              : 
     534              : /*!
     535              :  * @}
     536              :  *
     537              :  * @defgroup XXH32_family XXH32 family
     538              :  * @ingroup public
     539              :  * Contains functions used in the classic 32-bit xxHash algorithm.
     540              :  *
     541              :  * @note
     542              :  *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
     543              :  *   Note that the @ref XXH3_family provides competitive speed for both 32-bit
     544              :  *   and 64-bit systems, and offers true 64/128 bit hash results.
     545              :  *
     546              :  * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
     547              :  * @see @ref XXH32_impl for implementation details
     548              :  * @{
     549              :  */
     550              : 
     551              : /*!
     552              :  * @brief Calculates the 32-bit hash of @p input using xxHash32.
     553              :  *
     554              :  * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
     555              :  *
     556              :  * See @ref single_shot_example "Single Shot Example" for an example.
     557              :  *
     558              :  * @param input The block of data to be hashed, at least @p length bytes in size.
     559              :  * @param length The length of @p input, in bytes.
     560              :  * @param seed The 32-bit seed to alter the hash's output predictably.
     561              :  *
     562              :  * @pre
     563              :  *   The memory between @p input and @p input + @p length must be valid,
     564              :  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
     565              :  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
     566              :  *
     567              :  * @return The calculated 32-bit hash value.
     568              :  *
     569              :  * @see
     570              :  *    XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
     571              :  *    Direct equivalents for the other variants of xxHash.
     572              :  * @see
     573              :  *    XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
     574              :  */
     575              : XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
     576              : 
     577              : #ifndef XXH_NO_STREAM
     578              : /*!
     579              :  * Streaming functions generate the xxHash value from an incremental input.
     580              :  * This method is slower than single-call functions, due to state management.
     581              :  * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
     582              :  *
     583              :  * An XXH state must first be allocated using `XXH*_createState()`.
     584              :  *
     585              :  * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
     586              :  *
     587              :  * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
     588              :  *
     589              :  * The function returns an error code, with 0 meaning OK, and any other value
     590              :  * meaning there is an error.
     591              :  *
     592              :  * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
     593              :  * This function returns the nn-bits hash as an int or long long.
     594              :  *
     595              :  * It's still possible to continue inserting input into the hash state after a
     596              :  * digest, and generate new hash values later on by invoking `XXH*_digest()`.
     597              :  *
     598              :  * When done, release the state using `XXH*_freeState()`.
     599              :  *
     600              :  * @see streaming_example at the top of @ref xxhash.h for an example.
     601              :  */
     602              : 
     603              : /*!
     604              :  * @typedef struct XXH32_state_s XXH32_state_t
     605              :  * @brief The opaque state struct for the XXH32 streaming API.
     606              :  *
     607              :  * @see XXH32_state_s for details.
     608              :  */
     609              : typedef struct XXH32_state_s XXH32_state_t;
     610              : 
     611              : /*!
     612              :  * @brief Allocates an @ref XXH32_state_t.
     613              :  *
     614              :  * Must be freed with XXH32_freeState().
     615              :  * @return An allocated XXH32_state_t on success, `NULL` on failure.
     616              :  */
     617              : XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
     618              : /*!
     619              :  * @brief Frees an @ref XXH32_state_t.
     620              :  *
     621              :  * Must be allocated with XXH32_createState().
     622              :  * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
     623              :  * @return XXH_OK.
     624              :  */
     625              : XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
     626              : /*!
     627              :  * @brief Copies one @ref XXH32_state_t to another.
     628              :  *
     629              :  * @param dst_state The state to copy to.
     630              :  * @param src_state The state to copy from.
     631              :  * @pre
     632              :  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
     633              :  */
     634              : XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
     635              : 
     636              : /*!
     637              :  * @brief Resets an @ref XXH32_state_t to begin a new hash.
     638              :  *
     639              :  * This function resets and seeds a state. Call it before @ref XXH32_update().
     640              :  *
     641              :  * @param statePtr The state struct to reset.
     642              :  * @param seed The 32-bit seed to alter the hash result predictably.
     643              :  *
     644              :  * @pre
     645              :  *   @p statePtr must not be `NULL`.
     646              :  *
     647              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
     648              :  */
     649              : XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
     650              : 
     651              : /*!
     652              :  * @brief Consumes a block of @p input to an @ref XXH32_state_t.
     653              :  *
     654              :  * Call this to incrementally consume blocks of data.
     655              :  *
     656              :  * @param statePtr The state struct to update.
     657              :  * @param input The block of data to be hashed, at least @p length bytes in size.
     658              :  * @param length The length of @p input, in bytes.
     659              :  *
     660              :  * @pre
     661              :  *   @p statePtr must not be `NULL`.
     662              :  * @pre
     663              :  *   The memory between @p input and @p input + @p length must be valid,
     664              :  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
     665              :  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
     666              :  *
     667              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
     668              :  */
     669              : XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
     670              : 
     671              : /*!
     672              :  * @brief Returns the calculated hash value from an @ref XXH32_state_t.
     673              :  *
     674              :  * @note
     675              :  *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
     676              :  *   digest, and update again.
     677              :  *
     678              :  * @param statePtr The state struct to calculate the hash from.
     679              :  *
     680              :  * @pre
     681              :  *  @p statePtr must not be `NULL`.
     682              :  *
     683              :  * @return The calculated xxHash32 value from that state.
     684              :  */
     685              : XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
     686              : #endif /* !XXH_NO_STREAM */
     687              : 
     688              : /*******   Canonical representation   *******/
     689              : 
     690              : /*
     691              :  * The default return values from XXH functions are unsigned 32 and 64 bit
     692              :  * integers.
     693              :  * This the simplest and fastest format for further post-processing.
     694              :  *
     695              :  * However, this leaves open the question of what is the order on the byte level,
     696              :  * since little and big endian conventions will store the same number differently.
     697              :  *
     698              :  * The canonical representation settles this issue by mandating big-endian
     699              :  * convention, the same convention as human-readable numbers (large digits first).
     700              :  *
     701              :  * When writing hash values to storage, sending them over a network, or printing
     702              :  * them, it's highly recommended to use the canonical representation to ensure
     703              :  * portability across a wider range of systems, present and future.
     704              :  *
     705              :  * The following functions allow transformation of hash values to and from
     706              :  * canonical format.
     707              :  */
     708              : 
     709              : /*!
     710              :  * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
     711              :  */
     712              : typedef struct {
     713              :     unsigned char digest[4]; /*!< Hash bytes, big endian */
     714              : } XXH32_canonical_t;
     715              : 
     716              : /*!
     717              :  * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
     718              :  *
     719              :  * @param dst The @ref XXH32_canonical_t pointer to be stored to.
     720              :  * @param hash The @ref XXH32_hash_t to be converted.
     721              :  *
     722              :  * @pre
     723              :  *   @p dst must not be `NULL`.
     724              :  */
     725              : XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
     726              : 
     727              : /*!
     728              :  * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
     729              :  *
     730              :  * @param src The @ref XXH32_canonical_t to convert.
     731              :  *
     732              :  * @pre
     733              :  *   @p src must not be `NULL`.
     734              :  *
     735              :  * @return The converted hash.
     736              :  */
     737              : XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
     738              : 
     739              : 
     740              : /*! @cond Doxygen ignores this part */
     741              : #ifdef __has_attribute
     742              : # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
     743              : #else
     744              : # define XXH_HAS_ATTRIBUTE(x) 0
     745              : #endif
     746              : /*! @endcond */
     747              : 
     748              : /*! @cond Doxygen ignores this part */
     749              : /*
     750              :  * C23 __STDC_VERSION__ number hasn't been specified yet. For now
     751              :  * leave as `201711L` (C17 + 1).
     752              :  * TODO: Update to correct value when its been specified.
     753              :  */
     754              : #define XXH_C23_VN 201711L
     755              : /*! @endcond */
     756              : 
     757              : /*! @cond Doxygen ignores this part */
     758              : /* C-language Attributes are added in C23. */
     759              : #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
     760              : # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
     761              : #else
     762              : # define XXH_HAS_C_ATTRIBUTE(x) 0
     763              : #endif
     764              : /*! @endcond */
     765              : 
     766              : /*! @cond Doxygen ignores this part */
     767              : #if defined(__cplusplus) && defined(__has_cpp_attribute)
     768              : # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
     769              : #else
     770              : # define XXH_HAS_CPP_ATTRIBUTE(x) 0
     771              : #endif
     772              : /*! @endcond */
     773              : 
     774              : /*! @cond Doxygen ignores this part */
     775              : /*
     776              :  * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
     777              :  * introduced in CPP17 and C23.
     778              :  * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
     779              :  * C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
     780              :  */
     781              : #if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
     782              : # define XXH_FALLTHROUGH [[fallthrough]]
     783              : #elif XXH_HAS_ATTRIBUTE(__fallthrough__)
     784              : # define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
     785              : #else
     786              : # define XXH_FALLTHROUGH /* fallthrough */
     787              : #endif
     788              : /*! @endcond */
     789              : 
     790              : /*! @cond Doxygen ignores this part */
     791              : /*
     792              :  * Define XXH_NOESCAPE for annotated pointers in public API.
     793              :  * https://clang.llvm.org/docs/AttributeReference.html#noescape
     794              :  * As of writing this, only supported by clang.
     795              :  */
     796              : #if XXH_HAS_ATTRIBUTE(noescape)
     797              : # define XXH_NOESCAPE __attribute__((noescape))
     798              : #else
     799              : # define XXH_NOESCAPE
     800              : #endif
     801              : /*! @endcond */
     802              : 
     803              : 
     804              : /*!
     805              :  * @}
     806              :  * @ingroup public
     807              :  * @{
     808              :  */
     809              : 
     810              : #ifndef XXH_NO_LONG_LONG
     811              : /*-**********************************************************************
     812              : *  64-bit hash
     813              : ************************************************************************/
     814              : #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
     815              : /*!
     816              :  * @brief An unsigned 64-bit integer.
     817              :  *
     818              :  * Not necessarily defined to `uint64_t` but functionally equivalent.
     819              :  */
     820              : typedef uint64_t XXH64_hash_t;
     821              : #elif !defined (__VMS) \
     822              :   && (defined (__cplusplus) \
     823              :   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
     824              : #  include <stdint.h>
     825              :    typedef uint64_t XXH64_hash_t;
     826              : #else
     827              : #  include <limits.h>
     828              : #  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
     829              :      /* LP64 ABI says uint64_t is unsigned long */
     830              :      typedef unsigned long XXH64_hash_t;
     831              : #  else
     832              :      /* the following type must have a width of 64-bit */
     833              :      typedef unsigned long long XXH64_hash_t;
     834              : #  endif
     835              : #endif
     836              : 
     837              : /*!
     838              :  * @}
     839              :  *
     840              :  * @defgroup XXH64_family XXH64 family
     841              :  * @ingroup public
     842              :  * @{
     843              :  * Contains functions used in the classic 64-bit xxHash algorithm.
     844              :  *
     845              :  * @note
     846              :  *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
     847              :  *   and offers true 64/128 bit hash results.
     848              :  *   It provides better speed for systems with vector processing capabilities.
     849              :  */
     850              : 
     851              : /*!
     852              :  * @brief Calculates the 64-bit hash of @p input using xxHash64.
     853              :  *
     854              :  * This function usually runs faster on 64-bit systems, but slower on 32-bit
     855              :  * systems (see benchmark).
     856              :  *
     857              :  * @param input The block of data to be hashed, at least @p length bytes in size.
     858              :  * @param length The length of @p input, in bytes.
     859              :  * @param seed The 64-bit seed to alter the hash's output predictably.
     860              :  *
     861              :  * @pre
     862              :  *   The memory between @p input and @p input + @p length must be valid,
     863              :  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
     864              :  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
     865              :  *
     866              :  * @return The calculated 64-bit hash.
     867              :  *
     868              :  * @see
     869              :  *    XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
     870              :  *    Direct equivalents for the other variants of xxHash.
     871              :  * @see
     872              :  *    XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
     873              :  */
     874              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
     875              : 
     876              : /*******   Streaming   *******/
     877              : #ifndef XXH_NO_STREAM
     878              : /*!
     879              :  * @brief The opaque state struct for the XXH64 streaming API.
     880              :  *
     881              :  * @see XXH64_state_s for details.
     882              :  */
     883              : typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
     884              : 
     885              : /*!
     886              :  * @brief Allocates an @ref XXH64_state_t.
     887              :  *
     888              :  * Must be freed with XXH64_freeState().
     889              :  * @return An allocated XXH64_state_t on success, `NULL` on failure.
     890              :  */
     891              : XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
     892              : 
     893              : /*!
     894              :  * @brief Frees an @ref XXH64_state_t.
     895              :  *
     896              :  * Must be allocated with XXH64_createState().
     897              :  * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
     898              :  * @return XXH_OK.
     899              :  */
     900              : XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
     901              : 
     902              : /*!
     903              :  * @brief Copies one @ref XXH64_state_t to another.
     904              :  *
     905              :  * @param dst_state The state to copy to.
     906              :  * @param src_state The state to copy from.
     907              :  * @pre
     908              :  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
     909              :  */
     910              : XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
     911              : 
     912              : /*!
     913              :  * @brief Resets an @ref XXH64_state_t to begin a new hash.
     914              :  *
     915              :  * This function resets and seeds a state. Call it before @ref XXH64_update().
     916              :  *
     917              :  * @param statePtr The state struct to reset.
     918              :  * @param seed The 64-bit seed to alter the hash result predictably.
     919              :  *
     920              :  * @pre
     921              :  *   @p statePtr must not be `NULL`.
     922              :  *
     923              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
     924              :  */
     925              : XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
     926              : 
     927              : /*!
     928              :  * @brief Consumes a block of @p input to an @ref XXH64_state_t.
     929              :  *
     930              :  * Call this to incrementally consume blocks of data.
     931              :  *
     932              :  * @param statePtr The state struct to update.
     933              :  * @param input The block of data to be hashed, at least @p length bytes in size.
     934              :  * @param length The length of @p input, in bytes.
     935              :  *
     936              :  * @pre
     937              :  *   @p statePtr must not be `NULL`.
     938              :  * @pre
     939              :  *   The memory between @p input and @p input + @p length must be valid,
     940              :  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
     941              :  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
     942              :  *
     943              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
     944              :  */
     945              : XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
     946              : 
     947              : /*!
     948              :  * @brief Returns the calculated hash value from an @ref XXH64_state_t.
     949              :  *
     950              :  * @note
     951              :  *   Calling XXH64_digest() will not affect @p statePtr, so you can update,
     952              :  *   digest, and update again.
     953              :  *
     954              :  * @param statePtr The state struct to calculate the hash from.
     955              :  *
     956              :  * @pre
     957              :  *  @p statePtr must not be `NULL`.
     958              :  *
     959              :  * @return The calculated xxHash64 value from that state.
     960              :  */
     961              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
     962              : #endif /* !XXH_NO_STREAM */
     963              : /*******   Canonical representation   *******/
     964              : 
     965              : /*!
     966              :  * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
     967              :  */
     968              : typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
     969              : 
     970              : /*!
     971              :  * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
     972              :  *
     973              :  * @param dst The @ref XXH64_canonical_t pointer to be stored to.
     974              :  * @param hash The @ref XXH64_hash_t to be converted.
     975              :  *
     976              :  * @pre
     977              :  *   @p dst must not be `NULL`.
     978              :  */
     979              : XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
     980              : 
     981              : /*!
     982              :  * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
     983              :  *
     984              :  * @param src The @ref XXH64_canonical_t to convert.
     985              :  *
     986              :  * @pre
     987              :  *   @p src must not be `NULL`.
     988              :  *
     989              :  * @return The converted hash.
     990              :  */
     991              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
     992              : 
     993              : #ifndef XXH_NO_XXH3
     994              : 
     995              : /*!
     996              :  * @}
     997              :  * ************************************************************************
     998              :  * @defgroup XXH3_family XXH3 family
     999              :  * @ingroup public
    1000              :  * @{
    1001              :  *
    1002              :  * XXH3 is a more recent hash algorithm featuring:
    1003              :  *  - Improved speed for both small and large inputs
    1004              :  *  - True 64-bit and 128-bit outputs
    1005              :  *  - SIMD acceleration
    1006              :  *  - Improved 32-bit viability
    1007              :  *
    1008              :  * Speed analysis methodology is explained here:
    1009              :  *
    1010              :  *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
    1011              :  *
    1012              :  * Compared to XXH64, expect XXH3 to run approximately
    1013              :  * ~2x faster on large inputs and >3x faster on small ones,
    1014              :  * exact differences vary depending on platform.
    1015              :  *
    1016              :  * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
    1017              :  * but does not require it.
    1018              :  * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
    1019              :  * at competitive speeds, even without vector support. Further details are
    1020              :  * explained in the implementation.
    1021              :  *
    1022              :  * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
    1023              :  * implementations for many common platforms:
    1024              :  *   - AVX512
    1025              :  *   - AVX2
    1026              :  *   - SSE2
    1027              :  *   - ARM NEON
    1028              :  *   - WebAssembly SIMD128
    1029              :  *   - POWER8 VSX
    1030              :  *   - s390x ZVector
    1031              :  * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
    1032              :  * selects the best version according to predefined macros. For the x86 family, an
    1033              :  * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
    1034              :  *
    1035              :  * XXH3 implementation is portable:
    1036              :  * it has a generic C90 formulation that can be compiled on any platform,
    1037              :  * all implementations generate exactly the same hash value on all platforms.
    1038              :  * Starting from v0.8.0, it's also labelled "stable", meaning that
    1039              :  * any future version will also generate the same hash value.
    1040              :  *
    1041              :  * XXH3 offers 2 variants, _64bits and _128bits.
    1042              :  *
    1043              :  * When only 64 bits are needed, prefer invoking the _64bits variant, as it
    1044              :  * reduces the amount of mixing, resulting in faster speed on small inputs.
    1045              :  * It's also generally simpler to manipulate a scalar return type than a struct.
    1046              :  *
    1047              :  * The API supports one-shot hashing, streaming mode, and custom secrets.
    1048              :  */
    1049              : /*-**********************************************************************
    1050              : *  XXH3 64-bit variant
    1051              : ************************************************************************/
    1052              : 
    1053              : /*!
    1054              :  * @brief 64-bit unseeded variant of XXH3.
    1055              :  *
    1056              :  * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of 0, however
    1057              :  * it may have slightly better performance due to constant propagation of the
    1058              :  * defaults.
    1059              :  *
    1060              :  * @see
    1061              :  *    XXH32(), XXH64(), XXH3_128bits(): equivalent for the other xxHash algorithms
    1062              :  * @see
    1063              :  *    XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
    1064              :  * @see
    1065              :  *    XXH3_64bits_reset(), XXH3_64bits_update(), XXH3_64bits_digest(): Streaming version.
    1066              :  */
    1067              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
    1068              : 
    1069              : /*!
    1070              :  * @brief 64-bit seeded variant of XXH3
    1071              :  *
    1072              :  * This variant generates a custom secret on the fly based on default secret
    1073              :  * altered using the `seed` value.
    1074              :  *
    1075              :  * While this operation is decently fast, note that it's not completely free.
    1076              :  *
    1077              :  * @note
    1078              :  *    seed == 0 produces the same results as @ref XXH3_64bits().
    1079              :  *
    1080              :  * @param input The data to hash
    1081              :  * @param length The length
    1082              :  * @param seed The 64-bit seed to alter the state.
    1083              :  */
    1084              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
    1085              : 
    1086              : /*!
    1087              :  * The bare minimum size for a custom secret.
    1088              :  *
    1089              :  * @see
    1090              :  *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
    1091              :  *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
    1092              :  */
    1093              : #define XXH3_SECRET_SIZE_MIN 136
    1094              : 
    1095              : /*!
    1096              :  * @brief 64-bit variant of XXH3 with a custom "secret".
    1097              :  *
    1098              :  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
    1099              :  * This makes it more difficult for an external actor to prepare an intentional collision.
    1100              :  * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
    1101              :  * However, the quality of the secret impacts the dispersion of the hash algorithm.
    1102              :  * Therefore, the secret _must_ look like a bunch of random bytes.
    1103              :  * Avoid "trivial" or structured data such as repeated sequences or a text document.
    1104              :  * Whenever in doubt about the "randomness" of the blob of bytes,
    1105              :  * consider employing "XXH3_generateSecret()" instead (see below).
    1106              :  * It will generate a proper high entropy secret derived from the blob of bytes.
    1107              :  * Another advantage of using XXH3_generateSecret() is that
    1108              :  * it guarantees that all bits within the initial blob of bytes
    1109              :  * will impact every bit of the output.
    1110              :  * This is not necessarily the case when using the blob of bytes directly
    1111              :  * because, when hashing _small_ inputs, only a portion of the secret is employed.
    1112              :  */
    1113              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
    1114              : 
    1115              : 
    1116              : /*******   Streaming   *******/
    1117              : #ifndef XXH_NO_STREAM
    1118              : /*
    1119              :  * Streaming requires state maintenance.
    1120              :  * This operation costs memory and CPU.
    1121              :  * As a consequence, streaming is slower than one-shot hashing.
    1122              :  * For better performance, prefer one-shot functions whenever applicable.
    1123              :  */
    1124              : 
    1125              : /*!
    1126              :  * @brief The state struct for the XXH3 streaming API.
    1127              :  *
    1128              :  * @see XXH3_state_s for details.
    1129              :  */
    1130              : typedef struct XXH3_state_s XXH3_state_t;
    1131              : XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
    1132              : XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
    1133              : 
    1134              : /*!
    1135              :  * @brief Copies one @ref XXH3_state_t to another.
    1136              :  *
    1137              :  * @param dst_state The state to copy to.
    1138              :  * @param src_state The state to copy from.
    1139              :  * @pre
    1140              :  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
    1141              :  */
    1142              : XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
    1143              : 
    1144              : /*!
    1145              :  * @brief Resets an @ref XXH3_state_t to begin a new hash.
    1146              :  *
    1147              :  * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_64bits_update().
    1148              :  * Digest will be equivalent to `XXH3_64bits()`.
    1149              :  *
    1150              :  * @param statePtr The state struct to reset.
    1151              :  *
    1152              :  * @pre
    1153              :  *   @p statePtr must not be `NULL`.
    1154              :  *
    1155              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
    1156              :  *
    1157              :  */
    1158              : XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
    1159              : 
    1160              : /*!
    1161              :  * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
    1162              :  *
    1163              :  * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_64bits_update().
    1164              :  * Digest will be equivalent to `XXH3_64bits_withSeed()`.
    1165              :  *
    1166              :  * @param statePtr The state struct to reset.
    1167              :  * @param seed     The 64-bit seed to alter the state.
    1168              :  *
    1169              :  * @pre
    1170              :  *   @p statePtr must not be `NULL`.
    1171              :  *
    1172              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
    1173              :  *
    1174              :  */
    1175              : XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
    1176              : 
    1177              : /*!
    1178              :  * XXH3_64bits_reset_withSecret():
    1179              :  * `secret` is referenced, it _must outlive_ the hash streaming session.
    1180              :  * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
    1181              :  * and the quality of produced hash values depends on secret's entropy
    1182              :  * (secret's content should look like a bunch of random bytes).
    1183              :  * When in doubt about the randomness of a candidate `secret`,
    1184              :  * consider employing `XXH3_generateSecret()` instead (see below).
    1185              :  */
    1186              : XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
    1187              : 
    1188              : /*!
    1189              :  * @brief Consumes a block of @p input to an @ref XXH3_state_t.
    1190              :  *
    1191              :  * Call this to incrementally consume blocks of data.
    1192              :  *
    1193              :  * @param statePtr The state struct to update.
    1194              :  * @param input The block of data to be hashed, at least @p length bytes in size.
    1195              :  * @param length The length of @p input, in bytes.
    1196              :  *
    1197              :  * @pre
    1198              :  *   @p statePtr must not be `NULL`.
    1199              :  * @pre
    1200              :  *   The memory between @p input and @p input + @p length must be valid,
    1201              :  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
    1202              :  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
    1203              :  *
    1204              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
    1205              :  */
    1206              : XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
    1207              : 
    1208              : /*!
    1209              :  * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
    1210              :  *
    1211              :  * @note
    1212              :  *   Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
    1213              :  *   digest, and update again.
    1214              :  *
    1215              :  * @param statePtr The state struct to calculate the hash from.
    1216              :  *
    1217              :  * @pre
    1218              :  *  @p statePtr must not be `NULL`.
    1219              :  *
    1220              :  * @return The calculated XXH3 64-bit hash value from that state.
    1221              :  */
    1222              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t  XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
    1223              : #endif /* !XXH_NO_STREAM */
    1224              : 
    1225              : /* note : canonical representation of XXH3 is the same as XXH64
    1226              :  * since they both produce XXH64_hash_t values */
    1227              : 
    1228              : 
    1229              : /*-**********************************************************************
    1230              : *  XXH3 128-bit variant
    1231              : ************************************************************************/
    1232              : 
    1233              : /*!
    1234              :  * @brief The return value from 128-bit hashes.
    1235              :  *
    1236              :  * Stored in little endian order, although the fields themselves are in native
    1237              :  * endianness.
    1238              :  */
    1239              : typedef struct {
    1240              :     XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
    1241              :     XXH64_hash_t high64;  /*!< `value >> 64` */
    1242              : } XXH128_hash_t;
    1243              : 
    1244              : /*!
    1245              :  * @brief Unseeded 128-bit variant of XXH3
    1246              :  *
    1247              :  * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
    1248              :  * for shorter inputs.
    1249              :  *
    1250              :  * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of 0, however
    1251              :  * it may have slightly better performance due to constant propagation of the
    1252              :  * defaults.
    1253              :  *
    1254              :  * @see
    1255              :  *    XXH32(), XXH64(), XXH3_64bits(): equivalent for the other xxHash algorithms
    1256              :  * @see
    1257              :  *    XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
    1258              :  * @see
    1259              :  *    XXH3_128bits_reset(), XXH3_128bits_update(), XXH3_128bits_digest(): Streaming version.
    1260              :  */
    1261              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
    1262              : /*! @brief Seeded 128-bit variant of XXH3. @see XXH3_64bits_withSeed(). */
    1263              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
    1264              : /*! @brief Custom secret 128-bit variant of XXH3. @see XXH3_64bits_withSecret(). */
    1265              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
    1266              : 
    1267              : /*******   Streaming   *******/
    1268              : #ifndef XXH_NO_STREAM
    1269              : /*
    1270              :  * Streaming requires state maintenance.
    1271              :  * This operation costs memory and CPU.
    1272              :  * As a consequence, streaming is slower than one-shot hashing.
    1273              :  * For better performance, prefer one-shot functions whenever applicable.
    1274              :  *
    1275              :  * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
    1276              :  * Use already declared XXH3_createState() and XXH3_freeState().
    1277              :  *
    1278              :  * All reset and streaming functions have same meaning as their 64-bit counterpart.
    1279              :  */
    1280              : 
    1281              : /*!
    1282              :  * @brief Resets an @ref XXH3_state_t to begin a new hash.
    1283              :  *
    1284              :  * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_128bits_update().
    1285              :  * Digest will be equivalent to `XXH3_128bits()`.
    1286              :  *
    1287              :  * @param statePtr The state struct to reset.
    1288              :  *
    1289              :  * @pre
    1290              :  *   @p statePtr must not be `NULL`.
    1291              :  *
    1292              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
    1293              :  *
    1294              :  */
    1295              : XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
    1296              : 
    1297              : /*!
    1298              :  * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
    1299              :  *
    1300              :  * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_128bits_update().
    1301              :  * Digest will be equivalent to `XXH3_128bits_withSeed()`.
    1302              :  *
    1303              :  * @param statePtr The state struct to reset.
    1304              :  * @param seed     The 64-bit seed to alter the state.
    1305              :  *
    1306              :  * @pre
    1307              :  *   @p statePtr must not be `NULL`.
    1308              :  *
    1309              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
    1310              :  *
    1311              :  */
    1312              : XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
    1313              : /*! @brief Custom secret 128-bit variant of XXH3. @see XXH_64bits_reset_withSecret(). */
    1314              : XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
    1315              : 
    1316              : /*!
    1317              :  * @brief Consumes a block of @p input to an @ref XXH3_state_t.
    1318              :  *
    1319              :  * Call this to incrementally consume blocks of data.
    1320              :  *
    1321              :  * @param statePtr The state struct to update.
    1322              :  * @param input The block of data to be hashed, at least @p length bytes in size.
    1323              :  * @param length The length of @p input, in bytes.
    1324              :  *
    1325              :  * @pre
    1326              :  *   @p statePtr must not be `NULL`.
    1327              :  * @pre
    1328              :  *   The memory between @p input and @p input + @p length must be valid,
    1329              :  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
    1330              :  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
    1331              :  *
    1332              :  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
    1333              :  */
    1334              : XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
    1335              : 
    1336              : /*!
    1337              :  * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
    1338              :  *
    1339              :  * @note
    1340              :  *   Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
    1341              :  *   digest, and update again.
    1342              :  *
    1343              :  * @param statePtr The state struct to calculate the hash from.
    1344              :  *
    1345              :  * @pre
    1346              :  *  @p statePtr must not be `NULL`.
    1347              :  *
    1348              :  * @return The calculated XXH3 128-bit hash value from that state.
    1349              :  */
    1350              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
    1351              : #endif /* !XXH_NO_STREAM */
    1352              : 
    1353              : /* Following helper functions make it possible to compare XXH128_hast_t values.
    1354              :  * Since XXH128_hash_t is a structure, this capability is not offered by the language.
    1355              :  * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
    1356              : 
    1357              : /*!
    1358              :  * XXH128_isEqual():
    1359              :  * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
    1360              :  */
    1361              : XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
    1362              : 
    1363              : /*!
    1364              :  * @brief Compares two @ref XXH128_hash_t
    1365              :  * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
    1366              :  *
    1367              :  * @return: >0 if *h128_1  > *h128_2
    1368              :  *          =0 if *h128_1 == *h128_2
    1369              :  *          <0 if *h128_1  < *h128_2
    1370              :  */
    1371              : XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
    1372              : 
    1373              : 
    1374              : /*******   Canonical representation   *******/
    1375              : typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
    1376              : 
    1377              : 
    1378              : /*!
    1379              :  * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
    1380              :  *
    1381              :  * @param dst The @ref XXH128_canonical_t pointer to be stored to.
    1382              :  * @param hash The @ref XXH128_hash_t to be converted.
    1383              :  *
    1384              :  * @pre
    1385              :  *   @p dst must not be `NULL`.
    1386              :  */
    1387              : XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
    1388              : 
    1389              : /*!
    1390              :  * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
    1391              :  *
    1392              :  * @param src The @ref XXH128_canonical_t to convert.
    1393              :  *
    1394              :  * @pre
    1395              :  *   @p src must not be `NULL`.
    1396              :  *
    1397              :  * @return The converted hash.
    1398              :  */
    1399              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
    1400              : 
    1401              : 
    1402              : #endif  /* !XXH_NO_XXH3 */
    1403              : #endif  /* XXH_NO_LONG_LONG */
    1404              : 
    1405              : /*!
    1406              :  * @}
    1407              :  */
    1408              : #endif /* XXHASH_H_5627135585666179 */
    1409              : 
    1410              : 
    1411              : 
    1412              : #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
    1413              : #define XXHASH_H_STATIC_13879238742
    1414              : /* ****************************************************************************
    1415              :  * This section contains declarations which are not guaranteed to remain stable.
    1416              :  * They may change in future versions, becoming incompatible with a different
    1417              :  * version of the library.
    1418              :  * These declarations should only be used with static linking.
    1419              :  * Never use them in association with dynamic linking!
    1420              :  ***************************************************************************** */
    1421              : 
    1422              : /*
    1423              :  * These definitions are only present to allow static allocation
    1424              :  * of XXH states, on stack or in a struct, for example.
    1425              :  * Never **ever** access their members directly.
    1426              :  */
    1427              : 
    1428              : /*!
    1429              :  * @internal
    1430              :  * @brief Structure for XXH32 streaming API.
    1431              :  *
    1432              :  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
    1433              :  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
    1434              :  * an opaque type. This allows fields to safely be changed.
    1435              :  *
    1436              :  * Typedef'd to @ref XXH32_state_t.
    1437              :  * Do not access the members of this struct directly.
    1438              :  * @see XXH64_state_s, XXH3_state_s
    1439              :  */
    1440              : struct XXH32_state_s {
    1441              :    XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
    1442              :    XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
    1443              :    XXH32_hash_t v[4];         /*!< Accumulator lanes */
    1444              :    XXH32_hash_t mem32[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
    1445              :    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem32 */
    1446              :    XXH32_hash_t reserved;     /*!< Reserved field. Do not read nor write to it. */
    1447              : };   /* typedef'd to XXH32_state_t */
    1448              : 
    1449              : 
    1450              : #ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
    1451              : 
    1452              : /*!
    1453              :  * @internal
    1454              :  * @brief Structure for XXH64 streaming API.
    1455              :  *
    1456              :  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
    1457              :  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
    1458              :  * an opaque type. This allows fields to safely be changed.
    1459              :  *
    1460              :  * Typedef'd to @ref XXH64_state_t.
    1461              :  * Do not access the members of this struct directly.
    1462              :  * @see XXH32_state_s, XXH3_state_s
    1463              :  */
    1464              : struct XXH64_state_s {
    1465              :    XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
    1466              :    XXH64_hash_t v[4];         /*!< Accumulator lanes */
    1467              :    XXH64_hash_t mem64[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
    1468              :    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem64 */
    1469              :    XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
    1470              :    XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it. */
    1471              : };   /* typedef'd to XXH64_state_t */
    1472              : 
    1473              : #ifndef XXH_NO_XXH3
    1474              : 
    1475              : #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
    1476              : #  include <stdalign.h>
    1477              : #  define XXH_ALIGN(n)      alignas(n)
    1478              : #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
    1479              : /* In C++ alignas() is a keyword */
    1480              : #  define XXH_ALIGN(n)      alignas(n)
    1481              : #elif defined(__GNUC__)
    1482              : #  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
    1483              : #elif defined(_MSC_VER)
    1484              : #  define XXH_ALIGN(n)      __declspec(align(n))
    1485              : #else
    1486              : #  define XXH_ALIGN(n)   /* disabled */
    1487              : #endif
    1488              : 
    1489              : /* Old GCC versions only accept the attribute after the type in structures. */
    1490              : #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
    1491              :     && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
    1492              :     && defined(__GNUC__)
    1493              : #   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
    1494              : #else
    1495              : #   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
    1496              : #endif
    1497              : 
    1498              : /*!
    1499              :  * @brief The size of the internal XXH3 buffer.
    1500              :  *
    1501              :  * This is the optimal update size for incremental hashing.
    1502              :  *
    1503              :  * @see XXH3_64b_update(), XXH3_128b_update().
    1504              :  */
    1505              : #define XXH3_INTERNALBUFFER_SIZE 256
    1506              : 
    1507              : /*!
    1508              :  * @internal
    1509              :  * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
    1510              :  *
    1511              :  * This is the size used in @ref XXH3_kSecret and the seeded functions.
    1512              :  *
    1513              :  * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
    1514              :  */
    1515              : #define XXH3_SECRET_DEFAULT_SIZE 192
    1516              : 
    1517              : /*!
    1518              :  * @internal
    1519              :  * @brief Structure for XXH3 streaming API.
    1520              :  *
    1521              :  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
    1522              :  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
    1523              :  * Otherwise it is an opaque type.
    1524              :  * Never use this definition in combination with dynamic library.
    1525              :  * This allows fields to safely be changed in the future.
    1526              :  *
    1527              :  * @note ** This structure has a strict alignment requirement of 64 bytes!! **
    1528              :  * Do not allocate this with `malloc()` or `new`,
    1529              :  * it will not be sufficiently aligned.
    1530              :  * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
    1531              :  *
    1532              :  * Typedef'd to @ref XXH3_state_t.
    1533              :  * Do never access the members of this struct directly.
    1534              :  *
    1535              :  * @see XXH3_INITSTATE() for stack initialization.
    1536              :  * @see XXH3_createState(), XXH3_freeState().
    1537              :  * @see XXH32_state_s, XXH64_state_s
    1538              :  */
    1539              : struct XXH3_state_s {
    1540              :    XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
    1541              :        /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
    1542              :    XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
    1543              :        /*!< Used to store a custom secret generated from a seed. */
    1544              :    XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
    1545              :        /*!< The internal buffer. @see XXH32_state_s::mem32 */
    1546              :    XXH32_hash_t bufferedSize;
    1547              :        /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
    1548              :    XXH32_hash_t useSeed;
    1549              :        /*!< Reserved field. Needed for padding on 64-bit. */
    1550              :    size_t nbStripesSoFar;
    1551              :        /*!< Number or stripes processed. */
    1552              :    XXH64_hash_t totalLen;
    1553              :        /*!< Total length hashed. 64-bit even on 32-bit targets. */
    1554              :    size_t nbStripesPerBlock;
    1555              :        /*!< Number of stripes per block. */
    1556              :    size_t secretLimit;
    1557              :        /*!< Size of @ref customSecret or @ref extSecret */
    1558              :    XXH64_hash_t seed;
    1559              :        /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
    1560              :    XXH64_hash_t reserved64;
    1561              :        /*!< Reserved field. */
    1562              :    const unsigned char* extSecret;
    1563              :        /*!< Reference to an external secret for the _withSecret variants, NULL
    1564              :         *   for other variants. */
    1565              :    /* note: there may be some padding at the end due to alignment on 64 bytes */
    1566              : }; /* typedef'd to XXH3_state_t */
    1567              : 
    1568              : #undef XXH_ALIGN_MEMBER
    1569              : 
    1570              : /*!
    1571              :  * @brief Initializes a stack-allocated `XXH3_state_s`.
    1572              :  *
    1573              :  * When the @ref XXH3_state_t structure is merely emplaced on stack,
    1574              :  * it should be initialized with XXH3_INITSTATE() or a memset()
    1575              :  * in case its first reset uses XXH3_NNbits_reset_withSeed().
    1576              :  * This init can be omitted if the first reset uses default or _withSecret mode.
    1577              :  * This operation isn't necessary when the state is created with XXH3_createState().
    1578              :  * Note that this doesn't prepare the state for a streaming operation,
    1579              :  * it's still necessary to use XXH3_NNbits_reset*() afterwards.
    1580              :  */
    1581              : #define XXH3_INITSTATE(XXH3_state_ptr)                       \
    1582              :     do {                                                     \
    1583              :         XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
    1584              :         tmp_xxh3_state_ptr->seed = 0;                        \
    1585              :         tmp_xxh3_state_ptr->extSecret = NULL;                \
    1586              :     } while(0)
    1587              : 
    1588              : 
    1589              : /*!
    1590              :  * simple alias to pre-selected XXH3_128bits variant
    1591              :  */
    1592              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
    1593              : 
    1594              : 
    1595              : /* ===   Experimental API   === */
    1596              : /* Symbols defined below must be considered tied to a specific library version. */
    1597              : 
    1598              : /*!
    1599              :  * XXH3_generateSecret():
    1600              :  *
    1601              :  * Derive a high-entropy secret from any user-defined content, named customSeed.
    1602              :  * The generated secret can be used in combination with `*_withSecret()` functions.
    1603              :  * The `_withSecret()` variants are useful to provide a higher level of protection
    1604              :  * than 64-bit seed, as it becomes much more difficult for an external actor to
    1605              :  * guess how to impact the calculation logic.
    1606              :  *
    1607              :  * The function accepts as input a custom seed of any length and any content,
    1608              :  * and derives from it a high-entropy secret of length @p secretSize into an
    1609              :  * already allocated buffer @p secretBuffer.
    1610              :  *
    1611              :  * The generated secret can then be used with any `*_withSecret()` variant.
    1612              :  * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
    1613              :  * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
    1614              :  * are part of this list. They all accept a `secret` parameter
    1615              :  * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
    1616              :  * _and_ feature very high entropy (consist of random-looking bytes).
    1617              :  * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
    1618              :  * be employed to ensure proper quality.
    1619              :  *
    1620              :  * @p customSeed can be anything. It can have any size, even small ones,
    1621              :  * and its content can be anything, even "poor entropy" sources such as a bunch
    1622              :  * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
    1623              :  *
    1624              :  * @pre
    1625              :  *   - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
    1626              :  *   - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
    1627              :  *
    1628              :  * Example code:
    1629              :  * @code{.c}
    1630              :  *    #include <stdio.h>
    1631              :  *    #include <stdlib.h>
    1632              :  *    #include <string.h>
    1633              :  *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
    1634              :  *    #include "xxhash.h"
    1635              :  *    // Hashes argv[2] using the entropy from argv[1].
    1636              :  *    int main(int argc, char* argv[])
    1637              :  *    {
    1638              :  *        char secret[XXH3_SECRET_SIZE_MIN];
    1639              :  *        if (argv != 3) { return 1; }
    1640              :  *        XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
    1641              :  *        XXH64_hash_t h = XXH3_64bits_withSecret(
    1642              :  *             argv[2], strlen(argv[2]),
    1643              :  *             secret, sizeof(secret)
    1644              :  *        );
    1645              :  *        printf("%016llx\n", (unsigned long long) h);
    1646              :  *    }
    1647              :  * @endcode
    1648              :  */
    1649              : XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
    1650              : 
    1651              : /*!
    1652              :  * @brief Generate the same secret as the _withSeed() variants.
    1653              :  *
    1654              :  * The generated secret can be used in combination with
    1655              :  *`*_withSecret()` and `_withSecretandSeed()` variants.
    1656              :  *
    1657              :  * Example C++ `std::string` hash class:
    1658              :  * @code{.cpp}
    1659              :  *    #include <string>
    1660              :  *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
    1661              :  *    #include "xxhash.h"
    1662              :  *    // Slow, seeds each time
    1663              :  *    class HashSlow {
    1664              :  *        XXH64_hash_t seed;
    1665              :  *    public:
    1666              :  *        HashSlow(XXH64_hash_t s) : seed{s} {}
    1667              :  *        size_t operator()(const std::string& x) const {
    1668              :  *            return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
    1669              :  *        }
    1670              :  *    };
    1671              :  *    // Fast, caches the seeded secret for future uses.
    1672              :  *    class HashFast {
    1673              :  *        unsigned char secret[XXH3_SECRET_SIZE_MIN];
    1674              :  *    public:
    1675              :  *        HashFast(XXH64_hash_t s) {
    1676              :  *            XXH3_generateSecret_fromSeed(secret, seed);
    1677              :  *        }
    1678              :  *        size_t operator()(const std::string& x) const {
    1679              :  *            return size_t{
    1680              :  *                XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
    1681              :  *            };
    1682              :  *        }
    1683              :  *    };
    1684              :  * @endcode
    1685              :  * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes
    1686              :  * @param seed The seed to seed the state.
    1687              :  */
    1688              : XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
    1689              : 
    1690              : /*!
    1691              :  * These variants generate hash values using either
    1692              :  * @p seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
    1693              :  * or @p secret for "large" keys (>= XXH3_MIDSIZE_MAX).
    1694              :  *
    1695              :  * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
    1696              :  * `_withSeed()` has to generate the secret on the fly for "large" keys.
    1697              :  * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
    1698              :  * `_withSecret()` has to generate the masks on the fly for "small" keys,
    1699              :  * which requires more instructions than _withSeed() variants.
    1700              :  * Therefore, _withSecretandSeed variant combines the best of both worlds.
    1701              :  *
    1702              :  * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
    1703              :  * this variant produces *exactly* the same results as `_withSeed()` variant,
    1704              :  * hence offering only a pure speed benefit on "large" input,
    1705              :  * by skipping the need to regenerate the secret for every large input.
    1706              :  *
    1707              :  * Another usage scenario is to hash the secret to a 64-bit hash value,
    1708              :  * for example with XXH3_64bits(), which then becomes the seed,
    1709              :  * and then employ both the seed and the secret in _withSecretandSeed().
    1710              :  * On top of speed, an added benefit is that each bit in the secret
    1711              :  * has a 50% chance to swap each bit in the output, via its impact to the seed.
    1712              :  *
    1713              :  * This is not guaranteed when using the secret directly in "small data" scenarios,
    1714              :  * because only portions of the secret are employed for small data.
    1715              :  */
    1716              : XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
    1717              : XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
    1718              :                               XXH_NOESCAPE const void* secret, size_t secretSize,
    1719              :                               XXH64_hash_t seed);
    1720              : /*! @copydoc XXH3_64bits_withSecretandSeed() */
    1721              : XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
    1722              : XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
    1723              :                                XXH_NOESCAPE const void* secret, size_t secretSize,
    1724              :                                XXH64_hash_t seed64);
    1725              : #ifndef XXH_NO_STREAM
    1726              : /*! @copydoc XXH3_64bits_withSecretandSeed() */
    1727              : XXH_PUBLIC_API XXH_errorcode
    1728              : XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
    1729              :                                     XXH_NOESCAPE const void* secret, size_t secretSize,
    1730              :                                     XXH64_hash_t seed64);
    1731              : /*! @copydoc XXH3_64bits_withSecretandSeed() */
    1732              : XXH_PUBLIC_API XXH_errorcode
    1733              : XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
    1734              :                                      XXH_NOESCAPE const void* secret, size_t secretSize,
    1735              :                                      XXH64_hash_t seed64);
    1736              : #endif /* !XXH_NO_STREAM */
    1737              : 
    1738              : #endif  /* !XXH_NO_XXH3 */
    1739              : #endif  /* XXH_NO_LONG_LONG */
    1740              : #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
    1741              : #  define XXH_IMPLEMENTATION
    1742              : #endif
    1743              : 
    1744              : #endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
    1745              : 
    1746              : 
    1747              : /* ======================================================================== */
    1748              : /* ======================================================================== */
    1749              : /* ======================================================================== */
    1750              : 
    1751              : 
    1752              : /*-**********************************************************************
    1753              :  * xxHash implementation
    1754              :  *-**********************************************************************
    1755              :  * xxHash's implementation used to be hosted inside xxhash.c.
    1756              :  *
    1757              :  * However, inlining requires implementation to be visible to the compiler,
    1758              :  * hence be included alongside the header.
    1759              :  * Previously, implementation was hosted inside xxhash.c,
    1760              :  * which was then #included when inlining was activated.
    1761              :  * This construction created issues with a few build and install systems,
    1762              :  * as it required xxhash.c to be stored in /include directory.
    1763              :  *
    1764              :  * xxHash implementation is now directly integrated within xxhash.h.
    1765              :  * As a consequence, xxhash.c is no longer needed in /include.
    1766              :  *
    1767              :  * xxhash.c is still available and is still useful.
    1768              :  * In a "normal" setup, when xxhash is not inlined,
    1769              :  * xxhash.h only exposes the prototypes and public symbols,
    1770              :  * while xxhash.c can be built into an object file xxhash.o
    1771              :  * which can then be linked into the final binary.
    1772              :  ************************************************************************/
    1773              : 
    1774              : #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
    1775              :    || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
    1776              : #  define XXH_IMPLEM_13a8737387
    1777              : 
    1778              : /* *************************************
    1779              : *  Tuning parameters
    1780              : ***************************************/
    1781              : 
    1782              : /*!
    1783              :  * @defgroup tuning Tuning parameters
    1784              :  * @{
    1785              :  *
    1786              :  * Various macros to control xxHash's behavior.
    1787              :  */
    1788              : #ifdef XXH_DOXYGEN
    1789              : /*!
    1790              :  * @brief Define this to disable 64-bit code.
    1791              :  *
    1792              :  * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
    1793              :  */
    1794              : #  define XXH_NO_LONG_LONG
    1795              : #  undef XXH_NO_LONG_LONG /* don't actually */
    1796              : /*!
    1797              :  * @brief Controls how unaligned memory is accessed.
    1798              :  *
    1799              :  * By default, access to unaligned memory is controlled by `memcpy()`, which is
    1800              :  * safe and portable.
    1801              :  *
    1802              :  * Unfortunately, on some target/compiler combinations, the generated assembly
    1803              :  * is sub-optimal.
    1804              :  *
    1805              :  * The below switch allow selection of a different access method
    1806              :  * in the search for improved performance.
    1807              :  *
    1808              :  * @par Possible options:
    1809              :  *
    1810              :  *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
    1811              :  *   @par
    1812              :  *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
    1813              :  *     eliminate the function call and treat it as an unaligned access.
    1814              :  *
    1815              :  *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
    1816              :  *   @par
    1817              :  *     Depends on compiler extensions and is therefore not portable.
    1818              :  *     This method is safe _if_ your compiler supports it,
    1819              :  *     and *generally* as fast or faster than `memcpy`.
    1820              :  *
    1821              :  *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
    1822              :  *  @par
    1823              :  *     Casts directly and dereferences. This method doesn't depend on the
    1824              :  *     compiler, but it violates the C standard as it directly dereferences an
    1825              :  *     unaligned pointer. It can generate buggy code on targets which do not
    1826              :  *     support unaligned memory accesses, but in some circumstances, it's the
    1827              :  *     only known way to get the most performance.
    1828              :  *
    1829              :  *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
    1830              :  *  @par
    1831              :  *     Also portable. This can generate the best code on old compilers which don't
    1832              :  *     inline small `memcpy()` calls, and it might also be faster on big-endian
    1833              :  *     systems which lack a native byteswap instruction. However, some compilers
    1834              :  *     will emit literal byteshifts even if the target supports unaligned access.
    1835              :  *
    1836              :  *
    1837              :  * @warning
    1838              :  *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
    1839              :  *   care, as what works on one compiler/platform/optimization level may cause
    1840              :  *   another to read garbage data or even crash.
    1841              :  *
    1842              :  * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
    1843              :  *
    1844              :  * Prefer these methods in priority order (0 > 3 > 1 > 2)
    1845              :  */
    1846              : #  define XXH_FORCE_MEMORY_ACCESS 0
    1847              : 
    1848              : /*!
    1849              :  * @def XXH_SIZE_OPT
    1850              :  * @brief Controls how much xxHash optimizes for size.
    1851              :  *
    1852              :  * xxHash, when compiled, tends to result in a rather large binary size. This
    1853              :  * is mostly due to heavy usage to forced inlining and constant folding of the
    1854              :  * @ref XXH3_family to increase performance.
    1855              :  *
    1856              :  * However, some developers prefer size over speed. This option can
    1857              :  * significantly reduce the size of the generated code. When using the `-Os`
    1858              :  * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
    1859              :  * otherwise it is defined to 0.
    1860              :  *
    1861              :  * Most of these size optimizations can be controlled manually.
    1862              :  *
    1863              :  * This is a number from 0-2.
    1864              :  *  - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
    1865              :  *    comes first.
    1866              :  *  - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
    1867              :  *    conservative and disables hacks that increase code size. It implies the
    1868              :  *    options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
    1869              :  *    and @ref XXH3_NEON_LANES == 8 if they are not already defined.
    1870              :  *  - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
    1871              :  *    Performance may cry. For example, the single shot functions just use the
    1872              :  *    streaming API.
    1873              :  */
    1874              : #  define XXH_SIZE_OPT 0
    1875              : 
    1876              : /*!
    1877              :  * @def XXH_FORCE_ALIGN_CHECK
    1878              :  * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
    1879              :  * and XXH64() only).
    1880              :  *
    1881              :  * This is an important performance trick for architectures without decent
    1882              :  * unaligned memory access performance.
    1883              :  *
    1884              :  * It checks for input alignment, and when conditions are met, uses a "fast
    1885              :  * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
    1886              :  * faster_ read speed.
    1887              :  *
    1888              :  * The check costs one initial branch per hash, which is generally negligible,
    1889              :  * but not zero.
    1890              :  *
    1891              :  * Moreover, it's not useful to generate an additional code path if memory
    1892              :  * access uses the same instruction for both aligned and unaligned
    1893              :  * addresses (e.g. x86 and aarch64).
    1894              :  *
    1895              :  * In these cases, the alignment check can be removed by setting this macro to 0.
    1896              :  * Then the code will always use unaligned memory access.
    1897              :  * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
    1898              :  * which are platforms known to offer good unaligned memory accesses performance.
    1899              :  *
    1900              :  * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
    1901              :  *
    1902              :  * This option does not affect XXH3 (only XXH32 and XXH64).
    1903              :  */
    1904              : #  define XXH_FORCE_ALIGN_CHECK 0
    1905              : 
    1906              : /*!
    1907              :  * @def XXH_NO_INLINE_HINTS
    1908              :  * @brief When non-zero, sets all functions to `static`.
    1909              :  *
    1910              :  * By default, xxHash tries to force the compiler to inline almost all internal
    1911              :  * functions.
    1912              :  *
    1913              :  * This can usually improve performance due to reduced jumping and improved
    1914              :  * constant folding, but significantly increases the size of the binary which
    1915              :  * might not be favorable.
    1916              :  *
    1917              :  * Additionally, sometimes the forced inlining can be detrimental to performance,
    1918              :  * depending on the architecture.
    1919              :  *
    1920              :  * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
    1921              :  * compiler full control on whether to inline or not.
    1922              :  *
    1923              :  * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
    1924              :  * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
    1925              :  */
    1926              : #  define XXH_NO_INLINE_HINTS 0
    1927              : 
    1928              : /*!
    1929              :  * @def XXH3_INLINE_SECRET
    1930              :  * @brief Determines whether to inline the XXH3 withSecret code.
    1931              :  *
    1932              :  * When the secret size is known, the compiler can improve the performance
    1933              :  * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
    1934              :  *
    1935              :  * However, if the secret size is not known, it doesn't have any benefit. This
    1936              :  * happens when xxHash is compiled into a global symbol. Therefore, if
    1937              :  * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
    1938              :  *
    1939              :  * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
    1940              :  * that are *sometimes* force inline on -Og, and it is impossible to automatically
    1941              :  * detect this optimization level.
    1942              :  */
    1943              : #  define XXH3_INLINE_SECRET 0
    1944              : 
    1945              : /*!
    1946              :  * @def XXH32_ENDJMP
    1947              :  * @brief Whether to use a jump for `XXH32_finalize`.
    1948              :  *
    1949              :  * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
    1950              :  * This is generally preferable for performance,
    1951              :  * but depending on exact architecture, a jmp may be preferable.
    1952              :  *
    1953              :  * This setting is only possibly making a difference for very small inputs.
    1954              :  */
    1955              : #  define XXH32_ENDJMP 0
    1956              : 
    1957              : /*!
    1958              :  * @internal
    1959              :  * @brief Redefines old internal names.
    1960              :  *
    1961              :  * For compatibility with code that uses xxHash's internals before the names
    1962              :  * were changed to improve namespacing. There is no other reason to use this.
    1963              :  */
    1964              : #  define XXH_OLD_NAMES
    1965              : #  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
    1966              : 
    1967              : /*!
    1968              :  * @def XXH_NO_STREAM
    1969              :  * @brief Disables the streaming API.
    1970              :  *
    1971              :  * When xxHash is not inlined and the streaming functions are not used, disabling
    1972              :  * the streaming functions can improve code size significantly, especially with
    1973              :  * the @ref XXH3_family which tends to make constant folded copies of itself.
    1974              :  */
    1975              : #  define XXH_NO_STREAM
    1976              : #  undef XXH_NO_STREAM /* don't actually */
    1977              : #endif /* XXH_DOXYGEN */
    1978              : /*!
    1979              :  * @}
    1980              :  */
    1981              : 
    1982              : #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
    1983              :    /* prefer __packed__ structures (method 1) for GCC
    1984              :     * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
    1985              :     * which for some reason does unaligned loads. */
    1986              : #  if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
    1987              : #    define XXH_FORCE_MEMORY_ACCESS 1
    1988              : #  endif
    1989              : #endif
    1990              : 
    1991              : #ifndef XXH_SIZE_OPT
    1992              :    /* default to 1 for -Os or -Oz */
    1993              : #  if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
    1994              : #    define XXH_SIZE_OPT 1
    1995              : #  else
    1996              : #    define XXH_SIZE_OPT 0
    1997              : #  endif
    1998              : #endif
    1999              : 
    2000              : #ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
    2001              :    /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
    2002              : #  if XXH_SIZE_OPT >= 1 || \
    2003              :       defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
    2004              :    || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64)    || defined(_M_ARM) /* visual */
    2005              : #    define XXH_FORCE_ALIGN_CHECK 0
    2006              : #  else
    2007              : #    define XXH_FORCE_ALIGN_CHECK 1
    2008              : #  endif
    2009              : #endif
    2010              : 
    2011              : #ifndef XXH_NO_INLINE_HINTS
    2012              : #  if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__)  /* -O0, -fno-inline */
    2013              : #    define XXH_NO_INLINE_HINTS 1
    2014              : #  else
    2015              : #    define XXH_NO_INLINE_HINTS 0
    2016              : #  endif
    2017              : #endif
    2018              : 
    2019              : #ifndef XXH3_INLINE_SECRET
    2020              : #  if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
    2021              :      || !defined(XXH_INLINE_ALL)
    2022              : #    define XXH3_INLINE_SECRET 0
    2023              : #  else
    2024              : #    define XXH3_INLINE_SECRET 1
    2025              : #  endif
    2026              : #endif
    2027              : 
    2028              : #ifndef XXH32_ENDJMP
    2029              : /* generally preferable for performance */
    2030              : #  define XXH32_ENDJMP 0
    2031              : #endif
    2032              : 
    2033              : /*!
    2034              :  * @defgroup impl Implementation
    2035              :  * @{
    2036              :  */
    2037              : 
    2038              : 
    2039              : /* *************************************
    2040              : *  Includes & Memory related functions
    2041              : ***************************************/
    2042              : #if defined(XXH_NO_STREAM)
    2043              : /* nothing */
    2044              : #elif defined(XXH_NO_STDLIB)
    2045              : 
    2046              : /* When requesting to disable any mention of stdlib,
    2047              :  * the library loses the ability to invoked malloc / free.
    2048              :  * In practice, it means that functions like `XXH*_createState()`
    2049              :  * will always fail, and return NULL.
    2050              :  * This flag is useful in situations where
    2051              :  * xxhash.h is integrated into some kernel, embedded or limited environment
    2052              :  * without access to dynamic allocation.
    2053              :  */
    2054              : 
    2055              : static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
    2056              : static void XXH_free(void* p) { (void)p; }
    2057              : 
    2058              : #else
    2059              : 
    2060              : /*
    2061              :  * Modify the local functions below should you wish to use
    2062              :  * different memory routines for malloc() and free()
    2063              :  */
    2064              : #include <stdlib.h>
    2065              : 
    2066              : /*!
    2067              :  * @internal
    2068              :  * @brief Modify this function to use a different routine than malloc().
    2069              :  */
    2070            7 : static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
    2071              : 
    2072              : /*!
    2073              :  * @internal
    2074              :  * @brief Modify this function to use a different routine than free().
    2075              :  */
    2076            7 : static void XXH_free(void* p) { free(p); }
    2077              : 
    2078              : #endif  /* XXH_NO_STDLIB */
    2079              : 
    2080              : #include <string.h>
    2081              : 
    2082              : /*!
    2083              :  * @internal
    2084              :  * @brief Modify this function to use a different routine than memcpy().
    2085              :  */
    2086           25 : static void* XXH_memcpy(void* dest, const void* src, size_t size)
    2087              : {
    2088           25 :     return memcpy(dest,src,size);
    2089              : }
    2090              : 
    2091              : #include <limits.h>   /* ULLONG_MAX */
    2092              : 
    2093              : 
    2094              : /* *************************************
    2095              : *  Compiler Specific Options
    2096              : ***************************************/
    2097              : #ifdef _MSC_VER /* Visual Studio warning fix */
    2098              : #  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
    2099              : #endif
    2100              : 
    2101              : #if XXH_NO_INLINE_HINTS  /* disable inlining hints */
    2102              : #  if defined(__GNUC__) || defined(__clang__)
    2103              : #    define XXH_FORCE_INLINE static __attribute__((unused))
    2104              : #  else
    2105              : #    define XXH_FORCE_INLINE static
    2106              : #  endif
    2107              : #  define XXH_NO_INLINE static
    2108              : /* enable inlining hints */
    2109              : #elif defined(__GNUC__) || defined(__clang__)
    2110              : #  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
    2111              : #  define XXH_NO_INLINE static __attribute__((noinline))
    2112              : #elif defined(_MSC_VER)  /* Visual Studio */
    2113              : #  define XXH_FORCE_INLINE static __forceinline
    2114              : #  define XXH_NO_INLINE static __declspec(noinline)
    2115              : #elif defined (__cplusplus) \
    2116              :   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
    2117              : #  define XXH_FORCE_INLINE static inline
    2118              : #  define XXH_NO_INLINE static
    2119              : #else
    2120              : #  define XXH_FORCE_INLINE static
    2121              : #  define XXH_NO_INLINE static
    2122              : #endif
    2123              : 
    2124              : #if XXH3_INLINE_SECRET
    2125              : #  define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
    2126              : #else
    2127              : #  define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
    2128              : #endif
    2129              : 
    2130              : 
    2131              : /* *************************************
    2132              : *  Debug
    2133              : ***************************************/
    2134              : /*!
    2135              :  * @ingroup tuning
    2136              :  * @def XXH_DEBUGLEVEL
    2137              :  * @brief Sets the debugging level.
    2138              :  *
    2139              :  * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
    2140              :  * compiler's command line options. The value must be a number.
    2141              :  */
    2142              : #ifndef XXH_DEBUGLEVEL
    2143              : #  ifdef DEBUGLEVEL /* backwards compat */
    2144              : #    define XXH_DEBUGLEVEL DEBUGLEVEL
    2145              : #  else
    2146              : #    define XXH_DEBUGLEVEL 0
    2147              : #  endif
    2148              : #endif
    2149              : 
    2150              : #if (XXH_DEBUGLEVEL>=1)
    2151              : #  include <assert.h>   /* note: can still be disabled with NDEBUG */
    2152              : #  define XXH_ASSERT(c)   assert(c)
    2153              : #else
    2154              : #  if defined(__INTEL_COMPILER)
    2155              : #    define XXH_ASSERT(c)   XXH_ASSUME((unsigned char) (c))
    2156              : #  else
    2157              : #    define XXH_ASSERT(c)   XXH_ASSUME(c)
    2158              : #  endif
    2159              : #endif
    2160              : 
    2161              : /* note: use after variable declarations */
    2162              : #ifndef XXH_STATIC_ASSERT
    2163              : #  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
    2164              : #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
    2165              : #  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
    2166              : #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
    2167              : #  else
    2168              : #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
    2169              : #  endif
    2170              : #  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
    2171              : #endif
    2172              : 
    2173              : /*!
    2174              :  * @internal
    2175              :  * @def XXH_COMPILER_GUARD(var)
    2176              :  * @brief Used to prevent unwanted optimizations for @p var.
    2177              :  *
    2178              :  * It uses an empty GCC inline assembly statement with a register constraint
    2179              :  * which forces @p var into a general purpose register (eg eax, ebx, ecx
    2180              :  * on x86) and marks it as modified.
    2181              :  *
    2182              :  * This is used in a few places to avoid unwanted autovectorization (e.g.
    2183              :  * XXH32_round()). All vectorization we want is explicit via intrinsics,
    2184              :  * and _usually_ isn't wanted elsewhere.
    2185              :  *
    2186              :  * We also use it to prevent unwanted constant folding for AArch64 in
    2187              :  * XXH3_initCustomSecret_scalar().
    2188              :  */
    2189              : #if defined(__GNUC__) || defined(__clang__)
    2190              : #  define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
    2191              : #else
    2192              : #  define XXH_COMPILER_GUARD(var) ((void)0)
    2193              : #endif
    2194              : 
    2195              : /* Specifically for NEON vectors which use the "w" constraint, on
    2196              :  * Clang. */
    2197              : #if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
    2198              : #  define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
    2199              : #else
    2200              : #  define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
    2201              : #endif
    2202              : 
    2203              : /* *************************************
    2204              : *  Basic Types
    2205              : ***************************************/
    2206              : #if !defined (__VMS) \
    2207              :  && (defined (__cplusplus) \
    2208              :  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
    2209              : # include <stdint.h>
    2210              :   typedef uint8_t xxh_u8;
    2211              : #else
    2212              :   typedef unsigned char xxh_u8;
    2213              : #endif
    2214              : typedef XXH32_hash_t xxh_u32;
    2215              : 
    2216              : #ifdef XXH_OLD_NAMES
    2217              : #  warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
    2218              : #  define BYTE xxh_u8
    2219              : #  define U8   xxh_u8
    2220              : #  define U32  xxh_u32
    2221              : #endif
    2222              : 
    2223              : /* ***   Memory access   *** */
    2224              : 
    2225              : /*!
    2226              :  * @internal
    2227              :  * @fn xxh_u32 XXH_read32(const void* ptr)
    2228              :  * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
    2229              :  *
    2230              :  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
    2231              :  *
    2232              :  * @param ptr The pointer to read from.
    2233              :  * @return The 32-bit native endian integer from the bytes at @p ptr.
    2234              :  */
    2235              : 
    2236              : /*!
    2237              :  * @internal
    2238              :  * @fn xxh_u32 XXH_readLE32(const void* ptr)
    2239              :  * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
    2240              :  *
    2241              :  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
    2242              :  *
    2243              :  * @param ptr The pointer to read from.
    2244              :  * @return The 32-bit little endian integer from the bytes at @p ptr.
    2245              :  */
    2246              : 
    2247              : /*!
    2248              :  * @internal
    2249              :  * @fn xxh_u32 XXH_readBE32(const void* ptr)
    2250              :  * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
    2251              :  *
    2252              :  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
    2253              :  *
    2254              :  * @param ptr The pointer to read from.
    2255              :  * @return The 32-bit big endian integer from the bytes at @p ptr.
    2256              :  */
    2257              : 
    2258              : /*!
    2259              :  * @internal
    2260              :  * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
    2261              :  * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
    2262              :  *
    2263              :  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
    2264              :  * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
    2265              :  * always @ref XXH_alignment::XXH_unaligned.
    2266              :  *
    2267              :  * @param ptr The pointer to read from.
    2268              :  * @param align Whether @p ptr is aligned.
    2269              :  * @pre
    2270              :  *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
    2271              :  *   aligned.
    2272              :  * @return The 32-bit little endian integer from the bytes at @p ptr.
    2273              :  */
    2274              : 
    2275              : #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
    2276              : /*
    2277              :  * Manual byteshift. Best for old compilers which don't inline memcpy.
    2278              :  * We actually directly use XXH_readLE32 and XXH_readBE32.
    2279              :  */
    2280              : #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
    2281              : 
    2282              : /*
    2283              :  * Force direct memory access. Only works on CPU which support unaligned memory
    2284              :  * access in hardware.
    2285              :  */
    2286              : static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
    2287              : 
    2288              : #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
    2289              : 
    2290              : /*
    2291              :  * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
    2292              :  * documentation claimed that it only increased the alignment, but actually it
    2293              :  * can decrease it on gcc, clang, and icc:
    2294              :  * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
    2295              :  * https://gcc.godbolt.org/z/xYez1j67Y.
    2296              :  */
    2297              : #ifdef XXH_OLD_NAMES
    2298              : typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
    2299              : #endif
    2300         1018 : static xxh_u32 XXH_read32(const void* ptr)
    2301              : {
    2302              :     typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32;
    2303         1018 :     return *((const xxh_unalign32*)ptr);
    2304              : }
    2305              : 
    2306              : #else
    2307              : 
    2308              : /*
    2309              :  * Portable and safe solution. Generally efficient.
    2310              :  * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
    2311              :  */
    2312              : static xxh_u32 XXH_read32(const void* memPtr)
    2313              : {
    2314              :     xxh_u32 val;
    2315              :     XXH_memcpy(&val, memPtr, sizeof(val));
    2316              :     return val;
    2317              : }
    2318              : 
    2319              : #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
    2320              : 
    2321              : 
    2322              : /* ***   Endianness   *** */
    2323              : 
    2324              : /*!
    2325              :  * @ingroup tuning
    2326              :  * @def XXH_CPU_LITTLE_ENDIAN
    2327              :  * @brief Whether the target is little endian.
    2328              :  *
    2329              :  * Defined to 1 if the target is little endian, or 0 if it is big endian.
    2330              :  * It can be defined externally, for example on the compiler command line.
    2331              :  *
    2332              :  * If it is not defined,
    2333              :  * a runtime check (which is usually constant folded) is used instead.
    2334              :  *
    2335              :  * @note
    2336              :  *   This is not necessarily defined to an integer constant.
    2337              :  *
    2338              :  * @see XXH_isLittleEndian() for the runtime check.
    2339              :  */
    2340              : #ifndef XXH_CPU_LITTLE_ENDIAN
    2341              : /*
    2342              :  * Try to detect endianness automatically, to avoid the nonstandard behavior
    2343              :  * in `XXH_isLittleEndian()`
    2344              :  */
    2345              : #  if defined(_WIN32) /* Windows is always little endian */ \
    2346              :      || defined(__LITTLE_ENDIAN__) \
    2347              :      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
    2348              : #    define XXH_CPU_LITTLE_ENDIAN 1
    2349              : #  elif defined(__BIG_ENDIAN__) \
    2350              :      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
    2351              : #    define XXH_CPU_LITTLE_ENDIAN 0
    2352              : #  else
    2353              : /*!
    2354              :  * @internal
    2355              :  * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
    2356              :  *
    2357              :  * Most compilers will constant fold this.
    2358              :  */
    2359              : static int XXH_isLittleEndian(void)
    2360              : {
    2361              :     /*
    2362              :      * Portable and well-defined behavior.
    2363              :      * Don't use static: it is detrimental to performance.
    2364              :      */
    2365              :     const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
    2366              :     return one.c[0];
    2367              : }
    2368              : #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
    2369              : #  endif
    2370              : #endif
    2371              : 
    2372              : 
    2373              : 
    2374              : 
    2375              : /* ****************************************
    2376              : *  Compiler-specific Functions and Macros
    2377              : ******************************************/
    2378              : #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
    2379              : 
    2380              : #ifdef __has_builtin
    2381              : #  define XXH_HAS_BUILTIN(x) __has_builtin(x)
    2382              : #else
    2383              : #  define XXH_HAS_BUILTIN(x) 0
    2384              : #endif
    2385              : 
    2386              : 
    2387              : 
    2388              : /*
    2389              :  * C23 and future versions have standard "unreachable()".
    2390              :  * Once it has been implemented reliably we can add it as an
    2391              :  * additional case:
    2392              :  *
    2393              :  * ```
    2394              :  * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
    2395              :  * #  include <stddef.h>
    2396              :  * #  ifdef unreachable
    2397              :  * #    define XXH_UNREACHABLE() unreachable()
    2398              :  * #  endif
    2399              :  * #endif
    2400              :  * ```
    2401              :  *
    2402              :  * Note C++23 also has std::unreachable() which can be detected
    2403              :  * as follows:
    2404              :  * ```
    2405              :  * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
    2406              :  * #  include <utility>
    2407              :  * #  define XXH_UNREACHABLE() std::unreachable()
    2408              :  * #endif
    2409              :  * ```
    2410              :  * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
    2411              :  * We don't use that as including `<utility>` in `extern "C"` blocks
    2412              :  * doesn't work on GCC12
    2413              :  */
    2414              : 
    2415              : #if XXH_HAS_BUILTIN(__builtin_unreachable)
    2416              : #  define XXH_UNREACHABLE() __builtin_unreachable()
    2417              : 
    2418              : #elif defined(_MSC_VER)
    2419              : #  define XXH_UNREACHABLE() __assume(0)
    2420              : 
    2421              : #else
    2422              : #  define XXH_UNREACHABLE()
    2423              : #endif
    2424              : 
    2425              : #if XXH_HAS_BUILTIN(__builtin_assume)
    2426              : #  define XXH_ASSUME(c) __builtin_assume(c)
    2427              : #else
    2428              : #  define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
    2429              : #endif
    2430              : 
    2431              : /*!
    2432              :  * @internal
    2433              :  * @def XXH_rotl32(x,r)
    2434              :  * @brief 32-bit rotate left.
    2435              :  *
    2436              :  * @param x The 32-bit integer to be rotated.
    2437              :  * @param r The number of bits to rotate.
    2438              :  * @pre
    2439              :  *   @p r > 0 && @p r < 32
    2440              :  * @note
    2441              :  *   @p x and @p r may be evaluated multiple times.
    2442              :  * @return The rotated result.
    2443              :  */
    2444              : #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
    2445              :                                && XXH_HAS_BUILTIN(__builtin_rotateleft64)
    2446              : #  define XXH_rotl32 __builtin_rotateleft32
    2447              : #  define XXH_rotl64 __builtin_rotateleft64
    2448              : /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
    2449              : #elif defined(_MSC_VER)
    2450              : #  define XXH_rotl32(x,r) _rotl(x,r)
    2451              : #  define XXH_rotl64(x,r) _rotl64(x,r)
    2452              : #else
    2453              : #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
    2454              : #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
    2455              : #endif
    2456              : 
    2457              : /*!
    2458              :  * @internal
    2459              :  * @fn xxh_u32 XXH_swap32(xxh_u32 x)
    2460              :  * @brief A 32-bit byteswap.
    2461              :  *
    2462              :  * @param x The 32-bit integer to byteswap.
    2463              :  * @return @p x, byteswapped.
    2464              :  */
    2465              : #if defined(_MSC_VER)     /* Visual Studio */
    2466              : #  define XXH_swap32 _byteswap_ulong
    2467              : #elif XXH_GCC_VERSION >= 403
    2468              : #  define XXH_swap32 __builtin_bswap32
    2469              : #else
    2470              : static xxh_u32 XXH_swap32 (xxh_u32 x)
    2471              : {
    2472              :     return  ((x << 24) & 0xff000000 ) |
    2473              :             ((x <<  8) & 0x00ff0000 ) |
    2474              :             ((x >>  8) & 0x0000ff00 ) |
    2475              :             ((x >> 24) & 0x000000ff );
    2476              : }
    2477              : #endif
    2478              : 
    2479              : 
    2480              : /* ***************************
    2481              : *  Memory reads
    2482              : *****************************/
    2483              : 
    2484              : /*!
    2485              :  * @internal
    2486              :  * @brief Enum to indicate whether a pointer is aligned.
    2487              :  */
    2488              : typedef enum {
    2489              :     XXH_aligned,  /*!< Aligned */
    2490              :     XXH_unaligned /*!< Possibly unaligned */
    2491              : } XXH_alignment;
    2492              : 
    2493              : /*
    2494              :  * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
    2495              :  *
    2496              :  * This is ideal for older compilers which don't inline memcpy.
    2497              :  */
    2498              : #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
    2499              : 
    2500              : XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
    2501              : {
    2502              :     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    2503              :     return bytePtr[0]
    2504              :          | ((xxh_u32)bytePtr[1] << 8)
    2505              :          | ((xxh_u32)bytePtr[2] << 16)
    2506              :          | ((xxh_u32)bytePtr[3] << 24);
    2507              : }
    2508              : 
    2509              : XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
    2510              : {
    2511              :     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    2512              :     return bytePtr[3]
    2513              :          | ((xxh_u32)bytePtr[2] << 8)
    2514              :          | ((xxh_u32)bytePtr[1] << 16)
    2515              :          | ((xxh_u32)bytePtr[0] << 24);
    2516              : }
    2517              : 
    2518              : #else
    2519         1018 : XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
    2520              : {
    2521         1018 :     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
    2522              : }
    2523              : 
    2524            0 : static xxh_u32 XXH_readBE32(const void* ptr)
    2525              : {
    2526            0 :     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
    2527              : }
    2528              : #endif
    2529              : 
    2530              : XXH_FORCE_INLINE xxh_u32
    2531         1018 : XXH_readLE32_align(const void* ptr, XXH_alignment align)
    2532              : {
    2533         1018 :     if (align==XXH_unaligned) {
    2534         1018 :         return XXH_readLE32(ptr);
    2535              :     } else {
    2536            0 :         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
    2537              :     }
    2538              : }
    2539              : 
    2540              : 
    2541              : /* *************************************
    2542              : *  Misc
    2543              : ***************************************/
    2544              : /*! @ingroup public */
    2545            0 : XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
    2546              : 
    2547              : 
    2548              : /* *******************************************************************
    2549              : *  32-bit hash functions
    2550              : *********************************************************************/
    2551              : /*!
    2552              :  * @}
    2553              :  * @defgroup XXH32_impl XXH32 implementation
    2554              :  * @ingroup impl
    2555              :  *
    2556              :  * Details on the XXH32 implementation.
    2557              :  * @{
    2558              :  */
    2559              :  /* #define instead of static const, to be used as initializers */
    2560              : #define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
    2561              : #define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
    2562              : #define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
    2563              : #define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
    2564              : #define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
    2565              : 
    2566              : #ifdef XXH_OLD_NAMES
    2567              : #  define PRIME32_1 XXH_PRIME32_1
    2568              : #  define PRIME32_2 XXH_PRIME32_2
    2569              : #  define PRIME32_3 XXH_PRIME32_3
    2570              : #  define PRIME32_4 XXH_PRIME32_4
    2571              : #  define PRIME32_5 XXH_PRIME32_5
    2572              : #endif
    2573              : 
    2574              : /*!
    2575              :  * @internal
    2576              :  * @brief Normal stripe processing routine.
    2577              :  *
    2578              :  * This shuffles the bits so that any bit from @p input impacts several bits in
    2579              :  * @p acc.
    2580              :  *
    2581              :  * @param acc The accumulator lane.
    2582              :  * @param input The stripe of input to mix.
    2583              :  * @return The mixed accumulator lane.
    2584              :  */
    2585            0 : static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
    2586              : {
    2587            0 :     acc += input * XXH_PRIME32_2;
    2588            0 :     acc  = XXH_rotl32(acc, 13);
    2589            0 :     acc *= XXH_PRIME32_1;
    2590              : #if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
    2591              :     /*
    2592              :      * UGLY HACK:
    2593              :      * A compiler fence is the only thing that prevents GCC and Clang from
    2594              :      * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
    2595              :      * reason) without globally disabling SSE4.1.
    2596              :      *
    2597              :      * The reason we want to avoid vectorization is because despite working on
    2598              :      * 4 integers at a time, there are multiple factors slowing XXH32 down on
    2599              :      * SSE4:
    2600              :      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
    2601              :      *   newer chips!) making it slightly slower to multiply four integers at
    2602              :      *   once compared to four integers independently. Even when pmulld was
    2603              :      *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
    2604              :      *   just to multiply unless doing a long operation.
    2605              :      *
    2606              :      * - Four instructions are required to rotate,
    2607              :      *      movqda tmp,  v // not required with VEX encoding
    2608              :      *      pslld  tmp, 13 // tmp <<= 13
    2609              :      *      psrld  v,   19 // x >>= 19
    2610              :      *      por    v,  tmp // x |= tmp
    2611              :      *   compared to one for scalar:
    2612              :      *      roll   v, 13    // reliably fast across the board
    2613              :      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
    2614              :      *
    2615              :      * - Instruction level parallelism is actually more beneficial here because
    2616              :      *   the SIMD actually serializes this operation: While v1 is rotating, v2
    2617              :      *   can load data, while v3 can multiply. SSE forces them to operate
    2618              :      *   together.
    2619              :      *
    2620              :      * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
    2621              :      * the loop. NEON is only faster on the A53, and with the newer cores, it is less
    2622              :      * than half the speed.
    2623              :      *
    2624              :      * Additionally, this is used on WASM SIMD128 because it JITs to the same
    2625              :      * SIMD instructions and has the same issue.
    2626              :      */
    2627              :     XXH_COMPILER_GUARD(acc);
    2628              : #endif
    2629            0 :     return acc;
    2630              : }
    2631              : 
    2632              : /*!
    2633              :  * @internal
    2634              :  * @brief Mixes all bits to finalize the hash.
    2635              :  *
    2636              :  * The final mix ensures that all input bits have a chance to impact any bit in
    2637              :  * the output digest, resulting in an unbiased distribution.
    2638              :  *
    2639              :  * @param hash The hash to avalanche.
    2640              :  * @return The avalanched hash.
    2641              :  */
    2642          746 : static xxh_u32 XXH32_avalanche(xxh_u32 hash)
    2643              : {
    2644          746 :     hash ^= hash >> 15;
    2645          746 :     hash *= XXH_PRIME32_2;
    2646          746 :     hash ^= hash >> 13;
    2647          746 :     hash *= XXH_PRIME32_3;
    2648          746 :     hash ^= hash >> 16;
    2649          746 :     return hash;
    2650              : }
    2651              : 
    2652              : #define XXH_get32bits(p) XXH_readLE32_align(p, align)
    2653              : 
    2654              : /*!
    2655              :  * @internal
    2656              :  * @brief Processes the last 0-15 bytes of @p ptr.
    2657              :  *
    2658              :  * There may be up to 15 bytes remaining to consume from the input.
    2659              :  * This final stage will digest them to ensure that all input bytes are present
    2660              :  * in the final mix.
    2661              :  *
    2662              :  * @param hash The hash to finalize.
    2663              :  * @param ptr The pointer to the remaining input.
    2664              :  * @param len The remaining length, modulo 16.
    2665              :  * @param align Whether @p ptr is aligned.
    2666              :  * @return The finalized hash.
    2667              :  * @see XXH64_finalize().
    2668              :  */
    2669              : static XXH_PUREF xxh_u32
    2670          746 : XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
    2671              : {
    2672              : #define XXH_PROCESS1 do {                             \
    2673              :     hash += (*ptr++) * XXH_PRIME32_5;                 \
    2674              :     hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1;      \
    2675              : } while (0)
    2676              : 
    2677              : #define XXH_PROCESS4 do {                             \
    2678              :     hash += XXH_get32bits(ptr) * XXH_PRIME32_3;       \
    2679              :     ptr += 4;                                         \
    2680              :     hash  = XXH_rotl32(hash, 17) * XXH_PRIME32_4;     \
    2681              : } while (0)
    2682              : 
    2683          746 :     if (ptr==NULL) XXH_ASSERT(len == 0);
    2684              : 
    2685              :     /* Compact rerolled version; generally faster */
    2686              :     if (!XXH32_ENDJMP) {
    2687          746 :         len &= 15;
    2688         1764 :         while (len >= 4) {
    2689         1018 :             XXH_PROCESS4;
    2690         1018 :             len -= 4;
    2691              :         }
    2692         1345 :         while (len > 0) {
    2693          599 :             XXH_PROCESS1;
    2694          599 :             --len;
    2695              :         }
    2696          746 :         return XXH32_avalanche(hash);
    2697              :     } else {
    2698              :          switch(len&15) /* or switch(bEnd - p) */ {
    2699              :            case 12:      XXH_PROCESS4;
    2700              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2701              :            case 8:       XXH_PROCESS4;
    2702              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2703              :            case 4:       XXH_PROCESS4;
    2704              :                          return XXH32_avalanche(hash);
    2705              : 
    2706              :            case 13:      XXH_PROCESS4;
    2707              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2708              :            case 9:       XXH_PROCESS4;
    2709              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2710              :            case 5:       XXH_PROCESS4;
    2711              :                          XXH_PROCESS1;
    2712              :                          return XXH32_avalanche(hash);
    2713              : 
    2714              :            case 14:      XXH_PROCESS4;
    2715              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2716              :            case 10:      XXH_PROCESS4;
    2717              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2718              :            case 6:       XXH_PROCESS4;
    2719              :                          XXH_PROCESS1;
    2720              :                          XXH_PROCESS1;
    2721              :                          return XXH32_avalanche(hash);
    2722              : 
    2723              :            case 15:      XXH_PROCESS4;
    2724              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2725              :            case 11:      XXH_PROCESS4;
    2726              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2727              :            case 7:       XXH_PROCESS4;
    2728              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2729              :            case 3:       XXH_PROCESS1;
    2730              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2731              :            case 2:       XXH_PROCESS1;
    2732              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2733              :            case 1:       XXH_PROCESS1;
    2734              :                          XXH_FALLTHROUGH;  /* fallthrough */
    2735              :            case 0:       return XXH32_avalanche(hash);
    2736              :         }
    2737              :         XXH_ASSERT(0);
    2738              :         return hash;   /* reaching this point is deemed impossible */
    2739              :     }
    2740              : }
    2741              : 
    2742              : #ifdef XXH_OLD_NAMES
    2743              : #  define PROCESS1 XXH_PROCESS1
    2744              : #  define PROCESS4 XXH_PROCESS4
    2745              : #else
    2746              : #  undef XXH_PROCESS1
    2747              : #  undef XXH_PROCESS4
    2748              : #endif
    2749              : 
    2750              : /*!
    2751              :  * @internal
    2752              :  * @brief The implementation for @ref XXH32().
    2753              :  *
    2754              :  * @param input , len , seed Directly passed from @ref XXH32().
    2755              :  * @param align Whether @p input is aligned.
    2756              :  * @return The calculated hash.
    2757              :  */
    2758              : XXH_FORCE_INLINE XXH_PUREF xxh_u32
    2759          746 : XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
    2760              : {
    2761              :     xxh_u32 h32;
    2762              : 
    2763          746 :     if (input==NULL) XXH_ASSERT(len == 0);
    2764              : 
    2765          746 :     if (len>=16) {
    2766            0 :         const xxh_u8* const bEnd = input + len;
    2767            0 :         const xxh_u8* const limit = bEnd - 15;
    2768            0 :         xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
    2769            0 :         xxh_u32 v2 = seed + XXH_PRIME32_2;
    2770            0 :         xxh_u32 v3 = seed + 0;
    2771            0 :         xxh_u32 v4 = seed - XXH_PRIME32_1;
    2772              : 
    2773              :         do {
    2774            0 :             v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
    2775            0 :             v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
    2776            0 :             v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
    2777            0 :             v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
    2778            0 :         } while (input < limit);
    2779              : 
    2780            0 :         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
    2781            0 :             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
    2782              :     } else {
    2783          746 :         h32  = seed + XXH_PRIME32_5;
    2784              :     }
    2785              : 
    2786          746 :     h32 += (xxh_u32)len;
    2787              : 
    2788          746 :     return XXH32_finalize(h32, input, len&15, align);
    2789              : }
    2790              : 
    2791              : /*! @ingroup XXH32_family */
    2792          746 : XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
    2793              : {
    2794              : #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
    2795              :     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    2796              :     XXH32_state_t state;
    2797              :     XXH32_reset(&state, seed);
    2798              :     XXH32_update(&state, (const xxh_u8*)input, len);
    2799              :     return XXH32_digest(&state);
    2800              : #else
    2801              :     if (XXH_FORCE_ALIGN_CHECK) {
    2802              :         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
    2803              :             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
    2804              :     }   }
    2805              : 
    2806          746 :     return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
    2807              : #endif
    2808              : }
    2809              : 
    2810              : 
    2811              : 
    2812              : /*******   Hash streaming   *******/
    2813              : #ifndef XXH_NO_STREAM
    2814              : /*! @ingroup XXH32_family */
    2815            0 : XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
    2816              : {
    2817            0 :     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
    2818              : }
    2819              : /*! @ingroup XXH32_family */
    2820            0 : XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
    2821              : {
    2822            0 :     XXH_free(statePtr);
    2823            0 :     return XXH_OK;
    2824              : }
    2825              : 
    2826              : /*! @ingroup XXH32_family */
    2827            0 : XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
    2828              : {
    2829            0 :     XXH_memcpy(dstState, srcState, sizeof(*dstState));
    2830            0 : }
    2831              : 
    2832              : /*! @ingroup XXH32_family */
    2833            0 : XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
    2834              : {
    2835            0 :     XXH_ASSERT(statePtr != NULL);
    2836            0 :     memset(statePtr, 0, sizeof(*statePtr));
    2837            0 :     statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
    2838            0 :     statePtr->v[1] = seed + XXH_PRIME32_2;
    2839            0 :     statePtr->v[2] = seed + 0;
    2840            0 :     statePtr->v[3] = seed - XXH_PRIME32_1;
    2841            0 :     return XXH_OK;
    2842              : }
    2843              : 
    2844              : 
    2845              : /*! @ingroup XXH32_family */
    2846              : XXH_PUBLIC_API XXH_errorcode
    2847            0 : XXH32_update(XXH32_state_t* state, const void* input, size_t len)
    2848              : {
    2849            0 :     if (input==NULL) {
    2850            0 :         XXH_ASSERT(len == 0);
    2851            0 :         return XXH_OK;
    2852              :     }
    2853              : 
    2854            0 :     {   const xxh_u8* p = (const xxh_u8*)input;
    2855            0 :         const xxh_u8* const bEnd = p + len;
    2856              : 
    2857            0 :         state->total_len_32 += (XXH32_hash_t)len;
    2858            0 :         state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
    2859              : 
    2860            0 :         if (state->memsize + len < 16)  {   /* fill in tmp buffer */
    2861            0 :             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
    2862            0 :             state->memsize += (XXH32_hash_t)len;
    2863            0 :             return XXH_OK;
    2864              :         }
    2865              : 
    2866            0 :         if (state->memsize) {   /* some data left from previous update */
    2867            0 :             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
    2868            0 :             {   const xxh_u32* p32 = state->mem32;
    2869            0 :                 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
    2870            0 :                 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
    2871            0 :                 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
    2872            0 :                 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
    2873              :             }
    2874            0 :             p += 16-state->memsize;
    2875            0 :             state->memsize = 0;
    2876              :         }
    2877              : 
    2878            0 :         if (p <= bEnd-16) {
    2879            0 :             const xxh_u8* const limit = bEnd - 16;
    2880              : 
    2881              :             do {
    2882            0 :                 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
    2883            0 :                 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
    2884            0 :                 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
    2885            0 :                 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
    2886            0 :             } while (p<=limit);
    2887              : 
    2888              :         }
    2889              : 
    2890            0 :         if (p < bEnd) {
    2891            0 :             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
    2892            0 :             state->memsize = (unsigned)(bEnd-p);
    2893              :         }
    2894              :     }
    2895              : 
    2896            0 :     return XXH_OK;
    2897              : }
    2898              : 
    2899              : 
    2900              : /*! @ingroup XXH32_family */
    2901            0 : XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
    2902              : {
    2903              :     xxh_u32 h32;
    2904              : 
    2905            0 :     if (state->large_len) {
    2906            0 :         h32 = XXH_rotl32(state->v[0], 1)
    2907            0 :             + XXH_rotl32(state->v[1], 7)
    2908            0 :             + XXH_rotl32(state->v[2], 12)
    2909            0 :             + XXH_rotl32(state->v[3], 18);
    2910              :     } else {
    2911            0 :         h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
    2912              :     }
    2913              : 
    2914            0 :     h32 += state->total_len_32;
    2915              : 
    2916            0 :     return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
    2917              : }
    2918              : #endif /* !XXH_NO_STREAM */
    2919              : 
    2920              : /*******   Canonical representation   *******/
    2921              : 
    2922              : /*!
    2923              :  * @ingroup XXH32_family
    2924              :  * The default return values from XXH functions are unsigned 32 and 64 bit
    2925              :  * integers.
    2926              :  *
    2927              :  * The canonical representation uses big endian convention, the same convention
    2928              :  * as human-readable numbers (large digits first).
    2929              :  *
    2930              :  * This way, hash values can be written into a file or buffer, remaining
    2931              :  * comparable across different systems.
    2932              :  *
    2933              :  * The following functions allow transformation of hash values to and from their
    2934              :  * canonical format.
    2935              :  */
    2936            0 : XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
    2937              : {
    2938              :     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
    2939            0 :     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
    2940            0 :     XXH_memcpy(dst, &hash, sizeof(*dst));
    2941            0 : }
    2942              : /*! @ingroup XXH32_family */
    2943            0 : XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
    2944              : {
    2945            0 :     return XXH_readBE32(src);
    2946              : }
    2947              : 
    2948              : 
    2949              : #ifndef XXH_NO_LONG_LONG
    2950              : 
    2951              : /* *******************************************************************
    2952              : *  64-bit hash functions
    2953              : *********************************************************************/
    2954              : /*!
    2955              :  * @}
    2956              :  * @ingroup impl
    2957              :  * @{
    2958              :  */
    2959              : /*******   Memory access   *******/
    2960              : 
    2961              : typedef XXH64_hash_t xxh_u64;
    2962              : 
    2963              : #ifdef XXH_OLD_NAMES
    2964              : #  define U64 xxh_u64
    2965              : #endif
    2966              : 
    2967              : #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
    2968              : /*
    2969              :  * Manual byteshift. Best for old compilers which don't inline memcpy.
    2970              :  * We actually directly use XXH_readLE64 and XXH_readBE64.
    2971              :  */
    2972              : #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
    2973              : 
    2974              : /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
    2975              : static xxh_u64 XXH_read64(const void* memPtr)
    2976              : {
    2977              :     return *(const xxh_u64*) memPtr;
    2978              : }
    2979              : 
    2980              : #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
    2981              : 
    2982              : /*
    2983              :  * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
    2984              :  * documentation claimed that it only increased the alignment, but actually it
    2985              :  * can decrease it on gcc, clang, and icc:
    2986              :  * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
    2987              :  * https://gcc.godbolt.org/z/xYez1j67Y.
    2988              :  */
    2989              : #ifdef XXH_OLD_NAMES
    2990              : typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
    2991              : #endif
    2992         1656 : static xxh_u64 XXH_read64(const void* ptr)
    2993              : {
    2994              :     typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64;
    2995         1656 :     return *((const xxh_unalign64*)ptr);
    2996              : }
    2997              : 
    2998              : #else
    2999              : 
    3000              : /*
    3001              :  * Portable and safe solution. Generally efficient.
    3002              :  * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
    3003              :  */
    3004              : static xxh_u64 XXH_read64(const void* memPtr)
    3005              : {
    3006              :     xxh_u64 val;
    3007              :     XXH_memcpy(&val, memPtr, sizeof(val));
    3008              :     return val;
    3009              : }
    3010              : 
    3011              : #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
    3012              : 
    3013              : #if defined(_MSC_VER)     /* Visual Studio */
    3014              : #  define XXH_swap64 _byteswap_uint64
    3015              : #elif XXH_GCC_VERSION >= 403
    3016              : #  define XXH_swap64 __builtin_bswap64
    3017              : #else
    3018              : static xxh_u64 XXH_swap64(xxh_u64 x)
    3019              : {
    3020              :     return  ((x << 56) & 0xff00000000000000ULL) |
    3021              :             ((x << 40) & 0x00ff000000000000ULL) |
    3022              :             ((x << 24) & 0x0000ff0000000000ULL) |
    3023              :             ((x << 8)  & 0x000000ff00000000ULL) |
    3024              :             ((x >> 8)  & 0x00000000ff000000ULL) |
    3025              :             ((x >> 24) & 0x0000000000ff0000ULL) |
    3026              :             ((x >> 40) & 0x000000000000ff00ULL) |
    3027              :             ((x >> 56) & 0x00000000000000ffULL);
    3028              : }
    3029              : #endif
    3030              : 
    3031              : 
    3032              : /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
    3033              : #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
    3034              : 
    3035              : XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
    3036              : {
    3037              :     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    3038              :     return bytePtr[0]
    3039              :          | ((xxh_u64)bytePtr[1] << 8)
    3040              :          | ((xxh_u64)bytePtr[2] << 16)
    3041              :          | ((xxh_u64)bytePtr[3] << 24)
    3042              :          | ((xxh_u64)bytePtr[4] << 32)
    3043              :          | ((xxh_u64)bytePtr[5] << 40)
    3044              :          | ((xxh_u64)bytePtr[6] << 48)
    3045              :          | ((xxh_u64)bytePtr[7] << 56);
    3046              : }
    3047              : 
    3048              : XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
    3049              : {
    3050              :     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    3051              :     return bytePtr[7]
    3052              :          | ((xxh_u64)bytePtr[6] << 8)
    3053              :          | ((xxh_u64)bytePtr[5] << 16)
    3054              :          | ((xxh_u64)bytePtr[4] << 24)
    3055              :          | ((xxh_u64)bytePtr[3] << 32)
    3056              :          | ((xxh_u64)bytePtr[2] << 40)
    3057              :          | ((xxh_u64)bytePtr[1] << 48)
    3058              :          | ((xxh_u64)bytePtr[0] << 56);
    3059              : }
    3060              : 
    3061              : #else
    3062         1656 : XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
    3063              : {
    3064         1656 :     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
    3065              : }
    3066              : 
    3067            0 : static xxh_u64 XXH_readBE64(const void* ptr)
    3068              : {
    3069            0 :     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
    3070              : }
    3071              : #endif
    3072              : 
    3073              : XXH_FORCE_INLINE xxh_u64
    3074            0 : XXH_readLE64_align(const void* ptr, XXH_alignment align)
    3075              : {
    3076            0 :     if (align==XXH_unaligned)
    3077            0 :         return XXH_readLE64(ptr);
    3078              :     else
    3079            0 :         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
    3080              : }
    3081              : 
    3082              : 
    3083              : /*******   xxh64   *******/
    3084              : /*!
    3085              :  * @}
    3086              :  * @defgroup XXH64_impl XXH64 implementation
    3087              :  * @ingroup impl
    3088              :  *
    3089              :  * Details on the XXH64 implementation.
    3090              :  * @{
    3091              :  */
    3092              : /* #define rather that static const, to be used as initializers */
    3093              : #define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
    3094              : #define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
    3095              : #define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
    3096              : #define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
    3097              : #define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
    3098              : 
    3099              : #ifdef XXH_OLD_NAMES
    3100              : #  define PRIME64_1 XXH_PRIME64_1
    3101              : #  define PRIME64_2 XXH_PRIME64_2
    3102              : #  define PRIME64_3 XXH_PRIME64_3
    3103              : #  define PRIME64_4 XXH_PRIME64_4
    3104              : #  define PRIME64_5 XXH_PRIME64_5
    3105              : #endif
    3106              : 
    3107              : /*! @copydoc XXH32_round */
    3108            0 : static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
    3109              : {
    3110            0 :     acc += input * XXH_PRIME64_2;
    3111            0 :     acc  = XXH_rotl64(acc, 31);
    3112            0 :     acc *= XXH_PRIME64_1;
    3113            0 :     return acc;
    3114              : }
    3115              : 
    3116            0 : static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
    3117              : {
    3118            0 :     val  = XXH64_round(0, val);
    3119            0 :     acc ^= val;
    3120            0 :     acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
    3121            0 :     return acc;
    3122              : }
    3123              : 
    3124              : /*! @copydoc XXH32_avalanche */
    3125            4 : static xxh_u64 XXH64_avalanche(xxh_u64 hash)
    3126              : {
    3127            4 :     hash ^= hash >> 33;
    3128            4 :     hash *= XXH_PRIME64_2;
    3129            4 :     hash ^= hash >> 29;
    3130            4 :     hash *= XXH_PRIME64_3;
    3131            4 :     hash ^= hash >> 32;
    3132            4 :     return hash;
    3133              : }
    3134              : 
    3135              : 
    3136              : #define XXH_get64bits(p) XXH_readLE64_align(p, align)
    3137              : 
    3138              : /*!
    3139              :  * @internal
    3140              :  * @brief Processes the last 0-31 bytes of @p ptr.
    3141              :  *
    3142              :  * There may be up to 31 bytes remaining to consume from the input.
    3143              :  * This final stage will digest them to ensure that all input bytes are present
    3144              :  * in the final mix.
    3145              :  *
    3146              :  * @param hash The hash to finalize.
    3147              :  * @param ptr The pointer to the remaining input.
    3148              :  * @param len The remaining length, modulo 32.
    3149              :  * @param align Whether @p ptr is aligned.
    3150              :  * @return The finalized hash
    3151              :  * @see XXH32_finalize().
    3152              :  */
    3153              : static XXH_PUREF xxh_u64
    3154            0 : XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
    3155              : {
    3156            0 :     if (ptr==NULL) XXH_ASSERT(len == 0);
    3157            0 :     len &= 31;
    3158            0 :     while (len >= 8) {
    3159            0 :         xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
    3160            0 :         ptr += 8;
    3161            0 :         hash ^= k1;
    3162            0 :         hash  = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
    3163            0 :         len -= 8;
    3164              :     }
    3165            0 :     if (len >= 4) {
    3166            0 :         hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
    3167            0 :         ptr += 4;
    3168            0 :         hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
    3169            0 :         len -= 4;
    3170              :     }
    3171            0 :     while (len > 0) {
    3172            0 :         hash ^= (*ptr++) * XXH_PRIME64_5;
    3173            0 :         hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
    3174            0 :         --len;
    3175              :     }
    3176            0 :     return  XXH64_avalanche(hash);
    3177              : }
    3178              : 
    3179              : #ifdef XXH_OLD_NAMES
    3180              : #  define PROCESS1_64 XXH_PROCESS1_64
    3181              : #  define PROCESS4_64 XXH_PROCESS4_64
    3182              : #  define PROCESS8_64 XXH_PROCESS8_64
    3183              : #else
    3184              : #  undef XXH_PROCESS1_64
    3185              : #  undef XXH_PROCESS4_64
    3186              : #  undef XXH_PROCESS8_64
    3187              : #endif
    3188              : 
    3189              : /*!
    3190              :  * @internal
    3191              :  * @brief The implementation for @ref XXH64().
    3192              :  *
    3193              :  * @param input , len , seed Directly passed from @ref XXH64().
    3194              :  * @param align Whether @p input is aligned.
    3195              :  * @return The calculated hash.
    3196              :  */
    3197              : XXH_FORCE_INLINE XXH_PUREF xxh_u64
    3198            0 : XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
    3199              : {
    3200              :     xxh_u64 h64;
    3201            0 :     if (input==NULL) XXH_ASSERT(len == 0);
    3202              : 
    3203            0 :     if (len>=32) {
    3204            0 :         const xxh_u8* const bEnd = input + len;
    3205            0 :         const xxh_u8* const limit = bEnd - 31;
    3206            0 :         xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
    3207            0 :         xxh_u64 v2 = seed + XXH_PRIME64_2;
    3208            0 :         xxh_u64 v3 = seed + 0;
    3209            0 :         xxh_u64 v4 = seed - XXH_PRIME64_1;
    3210              : 
    3211              :         do {
    3212            0 :             v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
    3213            0 :             v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
    3214            0 :             v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
    3215            0 :             v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
    3216            0 :         } while (input<limit);
    3217              : 
    3218            0 :         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
    3219            0 :         h64 = XXH64_mergeRound(h64, v1);
    3220            0 :         h64 = XXH64_mergeRound(h64, v2);
    3221            0 :         h64 = XXH64_mergeRound(h64, v3);
    3222            0 :         h64 = XXH64_mergeRound(h64, v4);
    3223              : 
    3224              :     } else {
    3225            0 :         h64  = seed + XXH_PRIME64_5;
    3226              :     }
    3227              : 
    3228            0 :     h64 += (xxh_u64) len;
    3229              : 
    3230            0 :     return XXH64_finalize(h64, input, len, align);
    3231              : }
    3232              : 
    3233              : 
    3234              : /*! @ingroup XXH64_family */
    3235            0 : XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
    3236              : {
    3237              : #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
    3238              :     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    3239              :     XXH64_state_t state;
    3240              :     XXH64_reset(&state, seed);
    3241              :     XXH64_update(&state, (const xxh_u8*)input, len);
    3242              :     return XXH64_digest(&state);
    3243              : #else
    3244              :     if (XXH_FORCE_ALIGN_CHECK) {
    3245              :         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
    3246              :             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
    3247              :     }   }
    3248              : 
    3249            0 :     return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
    3250              : 
    3251              : #endif
    3252              : }
    3253              : 
    3254              : /*******   Hash Streaming   *******/
    3255              : #ifndef XXH_NO_STREAM
    3256              : /*! @ingroup XXH64_family*/
    3257            0 : XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
    3258              : {
    3259            0 :     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
    3260              : }
    3261              : /*! @ingroup XXH64_family */
    3262            0 : XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
    3263              : {
    3264            0 :     XXH_free(statePtr);
    3265            0 :     return XXH_OK;
    3266              : }
    3267              : 
    3268              : /*! @ingroup XXH64_family */
    3269            0 : XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
    3270              : {
    3271            0 :     XXH_memcpy(dstState, srcState, sizeof(*dstState));
    3272            0 : }
    3273              : 
    3274              : /*! @ingroup XXH64_family */
    3275            0 : XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
    3276              : {
    3277            0 :     XXH_ASSERT(statePtr != NULL);
    3278            0 :     memset(statePtr, 0, sizeof(*statePtr));
    3279            0 :     statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
    3280            0 :     statePtr->v[1] = seed + XXH_PRIME64_2;
    3281            0 :     statePtr->v[2] = seed + 0;
    3282            0 :     statePtr->v[3] = seed - XXH_PRIME64_1;
    3283            0 :     return XXH_OK;
    3284              : }
    3285              : 
    3286              : /*! @ingroup XXH64_family */
    3287              : XXH_PUBLIC_API XXH_errorcode
    3288            0 : XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
    3289              : {
    3290            0 :     if (input==NULL) {
    3291            0 :         XXH_ASSERT(len == 0);
    3292            0 :         return XXH_OK;
    3293              :     }
    3294              : 
    3295            0 :     {   const xxh_u8* p = (const xxh_u8*)input;
    3296            0 :         const xxh_u8* const bEnd = p + len;
    3297              : 
    3298            0 :         state->total_len += len;
    3299              : 
    3300            0 :         if (state->memsize + len < 32) {  /* fill in tmp buffer */
    3301            0 :             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
    3302            0 :             state->memsize += (xxh_u32)len;
    3303            0 :             return XXH_OK;
    3304              :         }
    3305              : 
    3306            0 :         if (state->memsize) {   /* tmp buffer is full */
    3307            0 :             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
    3308            0 :             state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
    3309            0 :             state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
    3310            0 :             state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
    3311            0 :             state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
    3312            0 :             p += 32 - state->memsize;
    3313            0 :             state->memsize = 0;
    3314              :         }
    3315              : 
    3316            0 :         if (p+32 <= bEnd) {
    3317            0 :             const xxh_u8* const limit = bEnd - 32;
    3318              : 
    3319              :             do {
    3320            0 :                 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
    3321            0 :                 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
    3322            0 :                 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
    3323            0 :                 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
    3324            0 :             } while (p<=limit);
    3325              : 
    3326              :         }
    3327              : 
    3328            0 :         if (p < bEnd) {
    3329            0 :             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
    3330            0 :             state->memsize = (unsigned)(bEnd-p);
    3331              :         }
    3332              :     }
    3333              : 
    3334            0 :     return XXH_OK;
    3335              : }
    3336              : 
    3337              : 
    3338              : /*! @ingroup XXH64_family */
    3339            0 : XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
    3340              : {
    3341              :     xxh_u64 h64;
    3342              : 
    3343            0 :     if (state->total_len >= 32) {
    3344            0 :         h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
    3345            0 :         h64 = XXH64_mergeRound(h64, state->v[0]);
    3346            0 :         h64 = XXH64_mergeRound(h64, state->v[1]);
    3347            0 :         h64 = XXH64_mergeRound(h64, state->v[2]);
    3348            0 :         h64 = XXH64_mergeRound(h64, state->v[3]);
    3349              :     } else {
    3350            0 :         h64  = state->v[2] /*seed*/ + XXH_PRIME64_5;
    3351              :     }
    3352              : 
    3353            0 :     h64 += (xxh_u64) state->total_len;
    3354              : 
    3355            0 :     return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
    3356              : }
    3357              : #endif /* !XXH_NO_STREAM */
    3358              : 
    3359              : /******* Canonical representation   *******/
    3360              : 
    3361              : /*! @ingroup XXH64_family */
    3362            0 : XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
    3363              : {
    3364              :     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
    3365            0 :     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
    3366            0 :     XXH_memcpy(dst, &hash, sizeof(*dst));
    3367            0 : }
    3368              : 
    3369              : /*! @ingroup XXH64_family */
    3370            0 : XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
    3371              : {
    3372            0 :     return XXH_readBE64(src);
    3373              : }
    3374              : 
    3375              : #ifndef XXH_NO_XXH3
    3376              : 
    3377              : /* *********************************************************************
    3378              : *  XXH3
    3379              : *  New generation hash designed for speed on small keys and vectorization
    3380              : ************************************************************************ */
    3381              : /*!
    3382              :  * @}
    3383              :  * @defgroup XXH3_impl XXH3 implementation
    3384              :  * @ingroup impl
    3385              :  * @{
    3386              :  */
    3387              : 
    3388              : /* ===   Compiler specifics   === */
    3389              : 
    3390              : #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
    3391              : #  define XXH_RESTRICT   /* disable */
    3392              : #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
    3393              : #  define XXH_RESTRICT   restrict
    3394              : #elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
    3395              :    || (defined (__clang__)) \
    3396              :    || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
    3397              :    || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
    3398              : /*
    3399              :  * There are a LOT more compilers that recognize __restrict but this
    3400              :  * covers the major ones.
    3401              :  */
    3402              : #  define XXH_RESTRICT   __restrict
    3403              : #else
    3404              : #  define XXH_RESTRICT   /* disable */
    3405              : #endif
    3406              : 
    3407              : #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
    3408              :   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
    3409              :   || defined(__clang__)
    3410              : #    define XXH_likely(x) __builtin_expect(x, 1)
    3411              : #    define XXH_unlikely(x) __builtin_expect(x, 0)
    3412              : #else
    3413              : #    define XXH_likely(x) (x)
    3414              : #    define XXH_unlikely(x) (x)
    3415              : #endif
    3416              : 
    3417              : #ifndef XXH_HAS_INCLUDE
    3418              : #  ifdef __has_include
    3419              : #    define XXH_HAS_INCLUDE(x) __has_include(x)
    3420              : #  else
    3421              : #    define XXH_HAS_INCLUDE(x) 0
    3422              : #  endif
    3423              : #endif
    3424              : 
    3425              : #if defined(__GNUC__) || defined(__clang__)
    3426              : #  if defined(__ARM_FEATURE_SVE)
    3427              : #    include <arm_sve.h>
    3428              : #  endif
    3429              : #  if defined(__ARM_NEON__) || defined(__ARM_NEON) \
    3430              :    || (defined(_M_ARM) && _M_ARM >= 7) \
    3431              :    || defined(_M_ARM64) || defined(_M_ARM64EC) \
    3432              :    || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
    3433              : #    define inline __inline__  /* circumvent a clang bug */
    3434              : #    include <arm_neon.h>
    3435              : #    undef inline
    3436              : #  elif defined(__AVX2__)
    3437              : #    include <immintrin.h>
    3438              : #  elif defined(__SSE2__)
    3439              : #    include <emmintrin.h>
    3440              : #  endif
    3441              : #endif
    3442              : 
    3443              : #if defined(_MSC_VER)
    3444              : #  include <intrin.h>
    3445              : #endif
    3446              : 
    3447              : /*
    3448              :  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
    3449              :  * remaining a true 64-bit/128-bit hash function.
    3450              :  *
    3451              :  * This is done by prioritizing a subset of 64-bit operations that can be
    3452              :  * emulated without too many steps on the average 32-bit machine.
    3453              :  *
    3454              :  * For example, these two lines seem similar, and run equally fast on 64-bit:
    3455              :  *
    3456              :  *   xxh_u64 x;
    3457              :  *   x ^= (x >> 47); // good
    3458              :  *   x ^= (x >> 13); // bad
    3459              :  *
    3460              :  * However, to a 32-bit machine, there is a major difference.
    3461              :  *
    3462              :  * x ^= (x >> 47) looks like this:
    3463              :  *
    3464              :  *   x.lo ^= (x.hi >> (47 - 32));
    3465              :  *
    3466              :  * while x ^= (x >> 13) looks like this:
    3467              :  *
    3468              :  *   // note: funnel shifts are not usually cheap.
    3469              :  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
    3470              :  *   x.hi ^= (x.hi >> 13);
    3471              :  *
    3472              :  * The first one is significantly faster than the second, simply because the
    3473              :  * shift is larger than 32. This means:
    3474              :  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
    3475              :  *    32 bits in the shift.
    3476              :  *  - The shift result will always fit in the lower 32 bits, and therefore,
    3477              :  *    we can ignore the upper 32 bits in the xor.
    3478              :  *
    3479              :  * Thanks to this optimization, XXH3 only requires these features to be efficient:
    3480              :  *
    3481              :  *  - Usable unaligned access
    3482              :  *  - A 32-bit or 64-bit ALU
    3483              :  *      - If 32-bit, a decent ADC instruction
    3484              :  *  - A 32 or 64-bit multiply with a 64-bit result
    3485              :  *  - For the 128-bit variant, a decent byteswap helps short inputs.
    3486              :  *
    3487              :  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
    3488              :  * platforms which can run XXH32 can run XXH3 efficiently.
    3489              :  *
    3490              :  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
    3491              :  * notable exception.
    3492              :  *
    3493              :  * First of all, Thumb-1 lacks support for the UMULL instruction which
    3494              :  * performs the important long multiply. This means numerous __aeabi_lmul
    3495              :  * calls.
    3496              :  *
    3497              :  * Second of all, the 8 functional registers are just not enough.
    3498              :  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
    3499              :  * Lo registers, and this shuffling results in thousands more MOVs than A32.
    3500              :  *
    3501              :  * A32 and T32 don't have this limitation. They can access all 14 registers,
    3502              :  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
    3503              :  * shifts is helpful, too.
    3504              :  *
    3505              :  * Therefore, we do a quick sanity check.
    3506              :  *
    3507              :  * If compiling Thumb-1 for a target which supports ARM instructions, we will
    3508              :  * emit a warning, as it is not a "sane" platform to compile for.
    3509              :  *
    3510              :  * Usually, if this happens, it is because of an accident and you probably need
    3511              :  * to specify -march, as you likely meant to compile for a newer architecture.
    3512              :  *
    3513              :  * Credit: large sections of the vectorial and asm source code paths
    3514              :  *         have been contributed by @easyaspi314
    3515              :  */
    3516              : #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
    3517              : #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
    3518              : #endif
    3519              : 
    3520              : /* ==========================================
    3521              :  * Vectorization detection
    3522              :  * ========================================== */
    3523              : 
    3524              : #ifdef XXH_DOXYGEN
    3525              : /*!
    3526              :  * @ingroup tuning
    3527              :  * @brief Overrides the vectorization implementation chosen for XXH3.
    3528              :  *
    3529              :  * Can be defined to 0 to disable SIMD or any of the values mentioned in
    3530              :  * @ref XXH_VECTOR_TYPE.
    3531              :  *
    3532              :  * If this is not defined, it uses predefined macros to determine the best
    3533              :  * implementation.
    3534              :  */
    3535              : #  define XXH_VECTOR XXH_SCALAR
    3536              : /*!
    3537              :  * @ingroup tuning
    3538              :  * @brief Possible values for @ref XXH_VECTOR.
    3539              :  *
    3540              :  * Note that these are actually implemented as macros.
    3541              :  *
    3542              :  * If this is not defined, it is detected automatically.
    3543              :  * internal macro XXH_X86DISPATCH overrides this.
    3544              :  */
    3545              : enum XXH_VECTOR_TYPE /* fake enum */ {
    3546              :     XXH_SCALAR = 0,  /*!< Portable scalar version */
    3547              :     XXH_SSE2   = 1,  /*!<
    3548              :                       * SSE2 for Pentium 4, Opteron, all x86_64.
    3549              :                       *
    3550              :                       * @note SSE2 is also guaranteed on Windows 10, macOS, and
    3551              :                       * Android x86.
    3552              :                       */
    3553              :     XXH_AVX2   = 2,  /*!< AVX2 for Haswell and Bulldozer */
    3554              :     XXH_AVX512 = 3,  /*!< AVX512 for Skylake and Icelake */
    3555              :     XXH_NEON   = 4,  /*!<
    3556              :                        * NEON for most ARMv7-A, all AArch64, and WASM SIMD128
    3557              :                        * via the SIMDeverywhere polyfill provided with the
    3558              :                        * Emscripten SDK.
    3559              :                        */
    3560              :     XXH_VSX    = 5,  /*!< VSX and ZVector for POWER8/z13 (64-bit) */
    3561              :     XXH_SVE    = 6,  /*!< SVE for some ARMv8-A and ARMv9-A */
    3562              : };
    3563              : /*!
    3564              :  * @ingroup tuning
    3565              :  * @brief Selects the minimum alignment for XXH3's accumulators.
    3566              :  *
    3567              :  * When using SIMD, this should match the alignment required for said vector
    3568              :  * type, so, for example, 32 for AVX2.
    3569              :  *
    3570              :  * Default: Auto detected.
    3571              :  */
    3572              : #  define XXH_ACC_ALIGN 8
    3573              : #endif
    3574              : 
    3575              : /* Actual definition */
    3576              : #ifndef XXH_DOXYGEN
    3577              : #  define XXH_SCALAR 0
    3578              : #  define XXH_SSE2   1
    3579              : #  define XXH_AVX2   2
    3580              : #  define XXH_AVX512 3
    3581              : #  define XXH_NEON   4
    3582              : #  define XXH_VSX    5
    3583              : #  define XXH_SVE    6
    3584              : #endif
    3585              : 
    3586              : #ifndef XXH_VECTOR    /* can be defined on command line */
    3587              : #  if defined(__ARM_FEATURE_SVE)
    3588              : #    define XXH_VECTOR XXH_SVE
    3589              : #  elif ( \
    3590              :         defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
    3591              :      || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
    3592              :      || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
    3593              :    ) && ( \
    3594              :         defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
    3595              :     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
    3596              :    )
    3597              : #    define XXH_VECTOR XXH_NEON
    3598              : #  elif defined(__AVX512F__)
    3599              : #    define XXH_VECTOR XXH_AVX512
    3600              : #  elif defined(__AVX2__)
    3601              : #    define XXH_VECTOR XXH_AVX2
    3602              : #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
    3603              : #    define XXH_VECTOR XXH_SSE2
    3604              : #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
    3605              :      || (defined(__s390x__) && defined(__VEC__)) \
    3606              :      && defined(__GNUC__) /* TODO: IBM XL */
    3607              : #    define XXH_VECTOR XXH_VSX
    3608              : #  else
    3609              : #    define XXH_VECTOR XXH_SCALAR
    3610              : #  endif
    3611              : #endif
    3612              : 
    3613              : /* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
    3614              : #if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
    3615              : #  ifdef _MSC_VER
    3616              : #    pragma warning(once : 4606)
    3617              : #  else
    3618              : #    warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
    3619              : #  endif
    3620              : #  undef XXH_VECTOR
    3621              : #  define XXH_VECTOR XXH_SCALAR
    3622              : #endif
    3623              : 
    3624              : /*
    3625              :  * Controls the alignment of the accumulator,
    3626              :  * for compatibility with aligned vector loads, which are usually faster.
    3627              :  */
    3628              : #ifndef XXH_ACC_ALIGN
    3629              : #  if defined(XXH_X86DISPATCH)
    3630              : #     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
    3631              : #  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
    3632              : #     define XXH_ACC_ALIGN 8
    3633              : #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
    3634              : #     define XXH_ACC_ALIGN 16
    3635              : #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
    3636              : #     define XXH_ACC_ALIGN 32
    3637              : #  elif XXH_VECTOR == XXH_NEON  /* neon */
    3638              : #     define XXH_ACC_ALIGN 16
    3639              : #  elif XXH_VECTOR == XXH_VSX   /* vsx */
    3640              : #     define XXH_ACC_ALIGN 16
    3641              : #  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
    3642              : #     define XXH_ACC_ALIGN 64
    3643              : #  elif XXH_VECTOR == XXH_SVE   /* sve */
    3644              : #     define XXH_ACC_ALIGN 64
    3645              : #  endif
    3646              : #endif
    3647              : 
    3648              : #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
    3649              :     || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
    3650              : #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
    3651              : #elif XXH_VECTOR == XXH_SVE
    3652              : #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
    3653              : #else
    3654              : #  define XXH_SEC_ALIGN 8
    3655              : #endif
    3656              : 
    3657              : #if defined(__GNUC__) || defined(__clang__)
    3658              : #  define XXH_ALIASING __attribute__((may_alias))
    3659              : #else
    3660              : #  define XXH_ALIASING /* nothing */
    3661              : #endif
    3662              : 
    3663              : /*
    3664              :  * UGLY HACK:
    3665              :  * GCC usually generates the best code with -O3 for xxHash.
    3666              :  *
    3667              :  * However, when targeting AVX2, it is overzealous in its unrolling resulting
    3668              :  * in code roughly 3/4 the speed of Clang.
    3669              :  *
    3670              :  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
    3671              :  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
    3672              :  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
    3673              :  *
    3674              :  * That is why when compiling the AVX2 version, it is recommended to use either
    3675              :  *   -O2 -mavx2 -march=haswell
    3676              :  * or
    3677              :  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
    3678              :  * for decent performance, or to use Clang instead.
    3679              :  *
    3680              :  * Fortunately, we can control the first one with a pragma that forces GCC into
    3681              :  * -O2, but the other one we can't control without "failed to inline always
    3682              :  * inline function due to target mismatch" warnings.
    3683              :  */
    3684              : #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
    3685              :   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
    3686              :   && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
    3687              : #  pragma GCC push_options
    3688              : #  pragma GCC optimize("-O2")
    3689              : #endif
    3690              : 
    3691              : #if XXH_VECTOR == XXH_NEON
    3692              : 
    3693              : /*
    3694              :  * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
    3695              :  * optimizes out the entire hashLong loop because of the aliasing violation.
    3696              :  *
    3697              :  * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
    3698              :  * so the only option is to mark it as aliasing.
    3699              :  */
    3700              : typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
    3701              : 
    3702              : /*!
    3703              :  * @internal
    3704              :  * @brief `vld1q_u64` but faster and alignment-safe.
    3705              :  *
    3706              :  * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
    3707              :  * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
    3708              :  *
    3709              :  * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
    3710              :  * prohibits load-store optimizations. Therefore, a direct dereference is used.
    3711              :  *
    3712              :  * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
    3713              :  * unaligned load.
    3714              :  */
    3715              : #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
    3716              : XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
    3717              : {
    3718              :     return *(xxh_aliasing_uint64x2_t const *)ptr;
    3719              : }
    3720              : #else
    3721              : XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
    3722              : {
    3723              :     return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
    3724              : }
    3725              : #endif
    3726              : 
    3727              : /*!
    3728              :  * @internal
    3729              :  * @brief `vmlal_u32` on low and high halves of a vector.
    3730              :  *
    3731              :  * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
    3732              :  * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
    3733              :  * with `vmlal_u32`.
    3734              :  */
    3735              : #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
    3736              : XXH_FORCE_INLINE uint64x2_t
    3737              : XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
    3738              : {
    3739              :     /* Inline assembly is the only way */
    3740              :     __asm__("umlal   %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
    3741              :     return acc;
    3742              : }
    3743              : XXH_FORCE_INLINE uint64x2_t
    3744              : XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
    3745              : {
    3746              :     /* This intrinsic works as expected */
    3747              :     return vmlal_high_u32(acc, lhs, rhs);
    3748              : }
    3749              : #else
    3750              : /* Portable intrinsic versions */
    3751              : XXH_FORCE_INLINE uint64x2_t
    3752              : XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
    3753              : {
    3754              :     return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
    3755              : }
    3756              : /*! @copydoc XXH_vmlal_low_u32
    3757              :  * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
    3758              : XXH_FORCE_INLINE uint64x2_t
    3759              : XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
    3760              : {
    3761              :     return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
    3762              : }
    3763              : #endif
    3764              : 
    3765              : /*!
    3766              :  * @ingroup tuning
    3767              :  * @brief Controls the NEON to scalar ratio for XXH3
    3768              :  *
    3769              :  * This can be set to 2, 4, 6, or 8.
    3770              :  *
    3771              :  * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
    3772              :  *
    3773              :  * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
    3774              :  * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
    3775              :  * bandwidth.
    3776              :  *
    3777              :  * This is even more noticeable on the more advanced cores like the Cortex-A76 which
    3778              :  * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
    3779              :  *
    3780              :  * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
    3781              :  * and 2 scalar lanes, which is chosen by default.
    3782              :  *
    3783              :  * This does not apply to Apple processors or 32-bit processors, which run better with
    3784              :  * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
    3785              :  *
    3786              :  * This change benefits CPUs with large micro-op buffers without negatively affecting
    3787              :  * most other CPUs:
    3788              :  *
    3789              :  *  | Chipset               | Dispatch type       | NEON only | 6:2 hybrid | Diff. |
    3790              :  *  |:----------------------|:--------------------|----------:|-----------:|------:|
    3791              :  *  | Snapdragon 730 (A76)  | 2 NEON/8 micro-ops  |  8.8 GB/s |  10.1 GB/s |  ~16% |
    3792              :  *  | Snapdragon 835 (A73)  | 2 NEON/3 micro-ops  |  5.1 GB/s |   5.3 GB/s |   ~5% |
    3793              :  *  | Marvell PXA1928 (A53) | In-order dual-issue |  1.9 GB/s |   1.9 GB/s |    0% |
    3794              :  *  | Apple M1              | 4 NEON/8 micro-ops  | 37.3 GB/s |  36.1 GB/s |  ~-3% |
    3795              :  *
    3796              :  * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
    3797              :  *
    3798              :  * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
    3799              :  * it effectively becomes worse 4.
    3800              :  *
    3801              :  * @see XXH3_accumulate_512_neon()
    3802              :  */
    3803              : # ifndef XXH3_NEON_LANES
    3804              : #  if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
    3805              :    && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
    3806              : #   define XXH3_NEON_LANES 6
    3807              : #  else
    3808              : #   define XXH3_NEON_LANES XXH_ACC_NB
    3809              : #  endif
    3810              : # endif
    3811              : #endif  /* XXH_VECTOR == XXH_NEON */
    3812              : 
    3813              : /*
    3814              :  * VSX and Z Vector helpers.
    3815              :  *
    3816              :  * This is very messy, and any pull requests to clean this up are welcome.
    3817              :  *
    3818              :  * There are a lot of problems with supporting VSX and s390x, due to
    3819              :  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
    3820              :  */
    3821              : #if XXH_VECTOR == XXH_VSX
    3822              : /* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
    3823              :  * and `pixel`. This is a problem for obvious reasons.
    3824              :  *
    3825              :  * These keywords are unnecessary; the spec literally says they are
    3826              :  * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
    3827              :  * after including the header.
    3828              :  *
    3829              :  * We use pragma push_macro/pop_macro to keep the namespace clean. */
    3830              : #  pragma push_macro("bool")
    3831              : #  pragma push_macro("vector")
    3832              : #  pragma push_macro("pixel")
    3833              : /* silence potential macro redefined warnings */
    3834              : #  undef bool
    3835              : #  undef vector
    3836              : #  undef pixel
    3837              : 
    3838              : #  if defined(__s390x__)
    3839              : #    include <s390intrin.h>
    3840              : #  else
    3841              : #    include <altivec.h>
    3842              : #  endif
    3843              : 
    3844              : /* Restore the original macro values, if applicable. */
    3845              : #  pragma pop_macro("pixel")
    3846              : #  pragma pop_macro("vector")
    3847              : #  pragma pop_macro("bool")
    3848              : 
    3849              : typedef __vector unsigned long long xxh_u64x2;
    3850              : typedef __vector unsigned char xxh_u8x16;
    3851              : typedef __vector unsigned xxh_u32x4;
    3852              : 
    3853              : /*
    3854              :  * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
    3855              :  */
    3856              : typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
    3857              : 
    3858              : # ifndef XXH_VSX_BE
    3859              : #  if defined(__BIG_ENDIAN__) \
    3860              :   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
    3861              : #    define XXH_VSX_BE 1
    3862              : #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
    3863              : #    warning "-maltivec=be is not recommended. Please use native endianness."
    3864              : #    define XXH_VSX_BE 1
    3865              : #  else
    3866              : #    define XXH_VSX_BE 0
    3867              : #  endif
    3868              : # endif /* !defined(XXH_VSX_BE) */
    3869              : 
    3870              : # if XXH_VSX_BE
    3871              : #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
    3872              : #    define XXH_vec_revb vec_revb
    3873              : #  else
    3874              : /*!
    3875              :  * A polyfill for POWER9's vec_revb().
    3876              :  */
    3877              : XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
    3878              : {
    3879              :     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
    3880              :                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
    3881              :     return vec_perm(val, val, vByteSwap);
    3882              : }
    3883              : #  endif
    3884              : # endif /* XXH_VSX_BE */
    3885              : 
    3886              : /*!
    3887              :  * Performs an unaligned vector load and byte swaps it on big endian.
    3888              :  */
    3889              : XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
    3890              : {
    3891              :     xxh_u64x2 ret;
    3892              :     XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
    3893              : # if XXH_VSX_BE
    3894              :     ret = XXH_vec_revb(ret);
    3895              : # endif
    3896              :     return ret;
    3897              : }
    3898              : 
    3899              : /*
    3900              :  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
    3901              :  *
    3902              :  * These intrinsics weren't added until GCC 8, despite existing for a while,
    3903              :  * and they are endian dependent. Also, their meaning swap depending on version.
    3904              :  * */
    3905              : # if defined(__s390x__)
    3906              :  /* s390x is always big endian, no issue on this platform */
    3907              : #  define XXH_vec_mulo vec_mulo
    3908              : #  define XXH_vec_mule vec_mule
    3909              : # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
    3910              : /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
    3911              :  /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
    3912              : #  define XXH_vec_mulo __builtin_altivec_vmulouw
    3913              : #  define XXH_vec_mule __builtin_altivec_vmuleuw
    3914              : # else
    3915              : /* gcc needs inline assembly */
    3916              : /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
    3917              : XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
    3918              : {
    3919              :     xxh_u64x2 result;
    3920              :     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
    3921              :     return result;
    3922              : }
    3923              : XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
    3924              : {
    3925              :     xxh_u64x2 result;
    3926              :     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
    3927              :     return result;
    3928              : }
    3929              : # endif /* XXH_vec_mulo, XXH_vec_mule */
    3930              : #endif /* XXH_VECTOR == XXH_VSX */
    3931              : 
    3932              : #if XXH_VECTOR == XXH_SVE
    3933              : #define ACCRND(acc, offset) \
    3934              : do { \
    3935              :     svuint64_t input_vec = svld1_u64(mask, xinput + offset);         \
    3936              :     svuint64_t secret_vec = svld1_u64(mask, xsecret + offset);       \
    3937              :     svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec);     \
    3938              :     svuint64_t swapped = svtbl_u64(input_vec, kSwap);                \
    3939              :     svuint64_t mixed_lo = svextw_u64_x(mask, mixed);                 \
    3940              :     svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32);            \
    3941              :     svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
    3942              :     acc = svadd_u64_x(mask, acc, mul);                               \
    3943              : } while (0)
    3944              : #endif /* XXH_VECTOR == XXH_SVE */
    3945              : 
    3946              : /* prefetch
    3947              :  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
    3948              : #if defined(XXH_NO_PREFETCH)
    3949              : #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
    3950              : #else
    3951              : #  if XXH_SIZE_OPT >= 1
    3952              : #    define XXH_PREFETCH(ptr) (void)(ptr)
    3953              : #  elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
    3954              : #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
    3955              : #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
    3956              : #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
    3957              : #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
    3958              : #  else
    3959              : #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
    3960              : #  endif
    3961              : #endif  /* XXH_NO_PREFETCH */
    3962              : 
    3963              : 
    3964              : /* ==========================================
    3965              :  * XXH3 default settings
    3966              :  * ========================================== */
    3967              : 
    3968              : #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
    3969              : 
    3970              : #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
    3971              : #  error "default keyset is not large enough"
    3972              : #endif
    3973              : 
    3974              : /*! Pseudorandom secret taken directly from FARSH. */
    3975              : XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
    3976              :     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
    3977              :     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
    3978              :     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
    3979              :     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
    3980              :     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
    3981              :     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
    3982              :     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
    3983              :     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
    3984              :     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
    3985              :     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
    3986              :     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
    3987              :     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
    3988              : };
    3989              : 
    3990              : static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL;  /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
    3991              : static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL;  /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
    3992              : 
    3993              : #ifdef XXH_OLD_NAMES
    3994              : #  define kSecret XXH3_kSecret
    3995              : #endif
    3996              : 
    3997              : #ifdef XXH_DOXYGEN
    3998              : /*!
    3999              :  * @brief Calculates a 32-bit to 64-bit long multiply.
    4000              :  *
    4001              :  * Implemented as a macro.
    4002              :  *
    4003              :  * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
    4004              :  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
    4005              :  * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
    4006              :  * use that instead of the normal method.
    4007              :  *
    4008              :  * If you are compiling for platforms like Thumb-1 and don't have a better option,
    4009              :  * you may also want to write your own long multiply routine here.
    4010              :  *
    4011              :  * @param x, y Numbers to be multiplied
    4012              :  * @return 64-bit product of the low 32 bits of @p x and @p y.
    4013              :  */
    4014              : XXH_FORCE_INLINE xxh_u64
    4015              : XXH_mult32to64(xxh_u64 x, xxh_u64 y)
    4016              : {
    4017              :    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
    4018              : }
    4019              : #elif defined(_MSC_VER) && defined(_M_IX86)
    4020              : #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
    4021              : #else
    4022              : /*
    4023              :  * Downcast + upcast is usually better than masking on older compilers like
    4024              :  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
    4025              :  *
    4026              :  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
    4027              :  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
    4028              :  */
    4029              : #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
    4030              : #endif
    4031              : 
    4032              : /*!
    4033              :  * @brief Calculates a 64->128-bit long multiply.
    4034              :  *
    4035              :  * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
    4036              :  * version.
    4037              :  *
    4038              :  * @param lhs , rhs The 64-bit integers to be multiplied
    4039              :  * @return The 128-bit result represented in an @ref XXH128_hash_t.
    4040              :  */
    4041              : static XXH128_hash_t
    4042          824 : XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
    4043              : {
    4044              :     /*
    4045              :      * GCC/Clang __uint128_t method.
    4046              :      *
    4047              :      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
    4048              :      * This is usually the best way as it usually uses a native long 64-bit
    4049              :      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
    4050              :      *
    4051              :      * Usually.
    4052              :      *
    4053              :      * Despite being a 32-bit platform, Clang (and emscripten) define this type
    4054              :      * despite not having the arithmetic for it. This results in a laggy
    4055              :      * compiler builtin call which calculates a full 128-bit multiply.
    4056              :      * In that case it is best to use the portable one.
    4057              :      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
    4058              :      */
    4059              : #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
    4060              :     && defined(__SIZEOF_INT128__) \
    4061              :     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
    4062              : 
    4063          824 :     __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
    4064              :     XXH128_hash_t r128;
    4065          824 :     r128.low64  = (xxh_u64)(product);
    4066          824 :     r128.high64 = (xxh_u64)(product >> 64);
    4067          824 :     return r128;
    4068              : 
    4069              :     /*
    4070              :      * MSVC for x64's _umul128 method.
    4071              :      *
    4072              :      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
    4073              :      *
    4074              :      * This compiles to single operand MUL on x64.
    4075              :      */
    4076              : #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
    4077              : 
    4078              : #ifndef _MSC_VER
    4079              : #   pragma intrinsic(_umul128)
    4080              : #endif
    4081              :     xxh_u64 product_high;
    4082              :     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
    4083              :     XXH128_hash_t r128;
    4084              :     r128.low64  = product_low;
    4085              :     r128.high64 = product_high;
    4086              :     return r128;
    4087              : 
    4088              :     /*
    4089              :      * MSVC for ARM64's __umulh method.
    4090              :      *
    4091              :      * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
    4092              :      */
    4093              : #elif defined(_M_ARM64) || defined(_M_ARM64EC)
    4094              : 
    4095              : #ifndef _MSC_VER
    4096              : #   pragma intrinsic(__umulh)
    4097              : #endif
    4098              :     XXH128_hash_t r128;
    4099              :     r128.low64  = lhs * rhs;
    4100              :     r128.high64 = __umulh(lhs, rhs);
    4101              :     return r128;
    4102              : 
    4103              : #else
    4104              :     /*
    4105              :      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
    4106              :      *
    4107              :      * This is a fast and simple grade school multiply, which is shown below
    4108              :      * with base 10 arithmetic instead of base 0x100000000.
    4109              :      *
    4110              :      *           9 3 // D2 lhs = 93
    4111              :      *         x 7 5 // D2 rhs = 75
    4112              :      *     ----------
    4113              :      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
    4114              :      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
    4115              :      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
    4116              :      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
    4117              :      *     ---------
    4118              :      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
    4119              :      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
    4120              :      *     ---------
    4121              :      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
    4122              :      *
    4123              :      * The reasons for adding the products like this are:
    4124              :      *  1. It avoids manual carry tracking. Just like how
    4125              :      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
    4126              :      *     This avoids a lot of complexity.
    4127              :      *
    4128              :      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
    4129              :      *     instruction available in ARM's Digital Signal Processing extension
    4130              :      *     in 32-bit ARMv6 and later, which is shown below:
    4131              :      *
    4132              :      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
    4133              :      *         {
    4134              :      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
    4135              :      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
    4136              :      *             *RdHi = (xxh_u32)(product >> 32);
    4137              :      *         }
    4138              :      *
    4139              :      *     This instruction was designed for efficient long multiplication, and
    4140              :      *     allows this to be calculated in only 4 instructions at speeds
    4141              :      *     comparable to some 64-bit ALUs.
    4142              :      *
    4143              :      *  3. It isn't terrible on other platforms. Usually this will be a couple
    4144              :      *     of 32-bit ADD/ADCs.
    4145              :      */
    4146              : 
    4147              :     /* First calculate all of the cross products. */
    4148              :     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
    4149              :     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
    4150              :     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
    4151              :     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
    4152              : 
    4153              :     /* Now add the products together. These will never overflow. */
    4154              :     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
    4155              :     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
    4156              :     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
    4157              : 
    4158              :     XXH128_hash_t r128;
    4159              :     r128.low64  = lower;
    4160              :     r128.high64 = upper;
    4161              :     return r128;
    4162              : #endif
    4163              : }
    4164              : 
    4165              : /*!
    4166              :  * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
    4167              :  *
    4168              :  * The reason for the separate function is to prevent passing too many structs
    4169              :  * around by value. This will hopefully inline the multiply, but we don't force it.
    4170              :  *
    4171              :  * @param lhs , rhs The 64-bit integers to multiply
    4172              :  * @return The low 64 bits of the product XOR'd by the high 64 bits.
    4173              :  * @see XXH_mult64to128()
    4174              :  */
    4175              : static xxh_u64
    4176          824 : XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
    4177              : {
    4178          824 :     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
    4179          824 :     return product.low64 ^ product.high64;
    4180              : }
    4181              : 
    4182              : /*! Seems to produce slightly better code on GCC for some reason. */
    4183          412 : XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
    4184              : {
    4185          412 :     XXH_ASSERT(0 <= shift && shift < 64);
    4186          412 :     return v64 ^ (v64 >> shift);
    4187              : }
    4188              : 
    4189              : /*
    4190              :  * This is a fast avalanche stage,
    4191              :  * suitable when input bits are already partially mixed
    4192              :  */
    4193          206 : static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
    4194              : {
    4195          206 :     h64 = XXH_xorshift64(h64, 37);
    4196          206 :     h64 *= PRIME_MX1;
    4197          206 :     h64 = XXH_xorshift64(h64, 32);
    4198          206 :     return h64;
    4199              : }
    4200              : 
    4201              : /*
    4202              :  * This is a stronger avalanche,
    4203              :  * inspired by Pelle Evensen's rrmxmx
    4204              :  * preferable when input has not been previously mixed
    4205              :  */
    4206            0 : static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
    4207              : {
    4208              :     /* this mix is inspired by Pelle Evensen's rrmxmx */
    4209            0 :     h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
    4210            0 :     h64 *= PRIME_MX2;
    4211            0 :     h64 ^= (h64 >> 35) + len ;
    4212            0 :     h64 *= PRIME_MX2;
    4213            0 :     return XXH_xorshift64(h64, 28);
    4214              : }
    4215              : 
    4216              : 
    4217              : /* ==========================================
    4218              :  * Short keys
    4219              :  * ==========================================
    4220              :  * One of the shortcomings of XXH32 and XXH64 was that their performance was
    4221              :  * sub-optimal on short lengths. It used an iterative algorithm which strongly
    4222              :  * favored lengths that were a multiple of 4 or 8.
    4223              :  *
    4224              :  * Instead of iterating over individual inputs, we use a set of single shot
    4225              :  * functions which piece together a range of lengths and operate in constant time.
    4226              :  *
    4227              :  * Additionally, the number of multiplies has been significantly reduced. This
    4228              :  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
    4229              :  *
    4230              :  * Depending on the platform, this may or may not be faster than XXH32, but it
    4231              :  * is almost guaranteed to be faster than XXH64.
    4232              :  */
    4233              : 
    4234              : /*
    4235              :  * At very short lengths, there isn't enough input to fully hide secrets, or use
    4236              :  * the entire secret.
    4237              :  *
    4238              :  * There is also only a limited amount of mixing we can do before significantly
    4239              :  * impacting performance.
    4240              :  *
    4241              :  * Therefore, we use different sections of the secret and always mix two secret
    4242              :  * samples with an XOR. This should have no effect on performance on the
    4243              :  * seedless or withSeed variants because everything _should_ be constant folded
    4244              :  * by modern compilers.
    4245              :  *
    4246              :  * The XOR mixing hides individual parts of the secret and increases entropy.
    4247              :  *
    4248              :  * This adds an extra layer of strength for custom secrets.
    4249              :  */
    4250              : XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
    4251            0 : XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    4252              : {
    4253            0 :     XXH_ASSERT(input != NULL);
    4254            0 :     XXH_ASSERT(1 <= len && len <= 3);
    4255            0 :     XXH_ASSERT(secret != NULL);
    4256              :     /*
    4257              :      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
    4258              :      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
    4259              :      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
    4260              :      */
    4261            0 :     {   xxh_u8  const c1 = input[0];
    4262            0 :         xxh_u8  const c2 = input[len >> 1];
    4263            0 :         xxh_u8  const c3 = input[len - 1];
    4264            0 :         xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
    4265            0 :                                | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
    4266            0 :         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
    4267            0 :         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
    4268            0 :         return XXH64_avalanche(keyed);
    4269              :     }
    4270              : }
    4271              : 
    4272              : XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
    4273            0 : XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    4274              : {
    4275            0 :     XXH_ASSERT(input != NULL);
    4276            0 :     XXH_ASSERT(secret != NULL);
    4277            0 :     XXH_ASSERT(4 <= len && len <= 8);
    4278            0 :     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
    4279            0 :     {   xxh_u32 const input1 = XXH_readLE32(input);
    4280            0 :         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
    4281            0 :         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
    4282            0 :         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
    4283            0 :         xxh_u64 const keyed = input64 ^ bitflip;
    4284            0 :         return XXH3_rrmxmx(keyed, len);
    4285              :     }
    4286              : }
    4287              : 
    4288              : XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
    4289            0 : XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    4290              : {
    4291            0 :     XXH_ASSERT(input != NULL);
    4292            0 :     XXH_ASSERT(secret != NULL);
    4293            0 :     XXH_ASSERT(9 <= len && len <= 16);
    4294            0 :     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
    4295            0 :         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
    4296            0 :         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
    4297            0 :         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
    4298            0 :         xxh_u64 const acc = len
    4299            0 :                           + XXH_swap64(input_lo) + input_hi
    4300            0 :                           + XXH3_mul128_fold64(input_lo, input_hi);
    4301            0 :         return XXH3_avalanche(acc);
    4302              :     }
    4303              : }
    4304              : 
    4305              : XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
    4306            0 : XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    4307              : {
    4308            0 :     XXH_ASSERT(len <= 16);
    4309            0 :     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
    4310            0 :         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
    4311            0 :         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
    4312            0 :         return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
    4313              :     }
    4314              : }
    4315              : 
    4316              : /*
    4317              :  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
    4318              :  * multiplication by zero, affecting hashes of lengths 17 to 240.
    4319              :  *
    4320              :  * However, they are very unlikely.
    4321              :  *
    4322              :  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
    4323              :  * unseeded non-cryptographic hashes, it does not attempt to defend itself
    4324              :  * against specially crafted inputs, only random inputs.
    4325              :  *
    4326              :  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
    4327              :  * cancelling out the secret is taken an arbitrary number of times (addressed
    4328              :  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
    4329              :  * and/or proper seeding:
    4330              :  *
    4331              :  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
    4332              :  * function that is only called up to 16 times per hash with up to 240 bytes of
    4333              :  * input.
    4334              :  *
    4335              :  * This is not too bad for a non-cryptographic hash function, especially with
    4336              :  * only 64 bit outputs.
    4337              :  *
    4338              :  * The 128-bit variant (which trades some speed for strength) is NOT affected
    4339              :  * by this, although it is always a good idea to use a proper seed if you care
    4340              :  * about strength.
    4341              :  */
    4342            0 : XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
    4343              :                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
    4344              : {
    4345              : #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
    4346              :   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
    4347              :   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
    4348              :     /*
    4349              :      * UGLY HACK:
    4350              :      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
    4351              :      * slower code.
    4352              :      *
    4353              :      * By forcing seed64 into a register, we disrupt the cost model and
    4354              :      * cause it to scalarize. See `XXH32_round()`
    4355              :      *
    4356              :      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
    4357              :      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
    4358              :      * GCC 9.2, despite both emitting scalar code.
    4359              :      *
    4360              :      * GCC generates much better scalar code than Clang for the rest of XXH3,
    4361              :      * which is why finding a more optimal codepath is an interest.
    4362              :      */
    4363              :     XXH_COMPILER_GUARD(seed64);
    4364              : #endif
    4365            0 :     {   xxh_u64 const input_lo = XXH_readLE64(input);
    4366            0 :         xxh_u64 const input_hi = XXH_readLE64(input+8);
    4367            0 :         return XXH3_mul128_fold64(
    4368            0 :             input_lo ^ (XXH_readLE64(secret)   + seed64),
    4369            0 :             input_hi ^ (XXH_readLE64(secret+8) - seed64)
    4370              :         );
    4371              :     }
    4372              : }
    4373              : 
    4374              : /* For mid range keys, XXH3 uses a Mum-hash variant. */
    4375              : XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
    4376            0 : XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
    4377              :                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
    4378              :                      XXH64_hash_t seed)
    4379              : {
    4380            0 :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    4381            0 :     XXH_ASSERT(16 < len && len <= 128);
    4382              : 
    4383            0 :     {   xxh_u64 acc = len * XXH_PRIME64_1;
    4384              : #if XXH_SIZE_OPT >= 1
    4385              :         /* Smaller and cleaner, but slightly slower. */
    4386              :         unsigned int i = (unsigned int)(len - 1) / 32;
    4387              :         do {
    4388              :             acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
    4389              :             acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
    4390              :         } while (i-- != 0);
    4391              : #else
    4392            0 :         if (len > 32) {
    4393            0 :             if (len > 64) {
    4394            0 :                 if (len > 96) {
    4395            0 :                     acc += XXH3_mix16B(input+48, secret+96, seed);
    4396            0 :                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
    4397              :                 }
    4398            0 :                 acc += XXH3_mix16B(input+32, secret+64, seed);
    4399            0 :                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
    4400              :             }
    4401            0 :             acc += XXH3_mix16B(input+16, secret+32, seed);
    4402            0 :             acc += XXH3_mix16B(input+len-32, secret+48, seed);
    4403              :         }
    4404            0 :         acc += XXH3_mix16B(input+0, secret+0, seed);
    4405            0 :         acc += XXH3_mix16B(input+len-16, secret+16, seed);
    4406              : #endif
    4407            0 :         return XXH3_avalanche(acc);
    4408              :     }
    4409              : }
    4410              : 
    4411              : #define XXH3_MIDSIZE_MAX 240
    4412              : 
    4413              : XXH_NO_INLINE XXH_PUREF XXH64_hash_t
    4414            0 : XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
    4415              :                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
    4416              :                       XXH64_hash_t seed)
    4417              : {
    4418            0 :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    4419            0 :     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
    4420              : 
    4421              :     #define XXH3_MIDSIZE_STARTOFFSET 3
    4422              :     #define XXH3_MIDSIZE_LASTOFFSET  17
    4423              : 
    4424            0 :     {   xxh_u64 acc = len * XXH_PRIME64_1;
    4425              :         xxh_u64 acc_end;
    4426            0 :         unsigned int const nbRounds = (unsigned int)len / 16;
    4427              :         unsigned int i;
    4428            0 :         XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
    4429            0 :         for (i=0; i<8; i++) {
    4430            0 :             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
    4431              :         }
    4432              :         /* last bytes */
    4433            0 :         acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
    4434            0 :         XXH_ASSERT(nbRounds >= 8);
    4435            0 :         acc = XXH3_avalanche(acc);
    4436              : #if defined(__clang__)                                /* Clang */ \
    4437              :     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
    4438              :     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
    4439              :         /*
    4440              :          * UGLY HACK:
    4441              :          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
    4442              :          * In everywhere else, it uses scalar code.
    4443              :          *
    4444              :          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
    4445              :          * would still be slower than UMAAL (see XXH_mult64to128).
    4446              :          *
    4447              :          * Unfortunately, Clang doesn't handle the long multiplies properly and
    4448              :          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
    4449              :          * scalarized into an ugly mess of VMOV.32 instructions.
    4450              :          *
    4451              :          * This mess is difficult to avoid without turning autovectorization
    4452              :          * off completely, but they are usually relatively minor and/or not
    4453              :          * worth it to fix.
    4454              :          *
    4455              :          * This loop is the easiest to fix, as unlike XXH32, this pragma
    4456              :          * _actually works_ because it is a loop vectorization instead of an
    4457              :          * SLP vectorization.
    4458              :          */
    4459              :         #pragma clang loop vectorize(disable)
    4460              : #endif
    4461            0 :         for (i=8 ; i < nbRounds; i++) {
    4462              :             /*
    4463              :              * Prevents clang for unrolling the acc loop and interleaving with this one.
    4464              :              */
    4465            0 :             XXH_COMPILER_GUARD(acc);
    4466            0 :             acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
    4467              :         }
    4468            0 :         return XXH3_avalanche(acc + acc_end);
    4469              :     }
    4470              : }
    4471              : 
    4472              : 
    4473              : /* =======     Long Keys     ======= */
    4474              : 
    4475              : #define XXH_STRIPE_LEN 64
    4476              : #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
    4477              : #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
    4478              : 
    4479              : #ifdef XXH_OLD_NAMES
    4480              : #  define STRIPE_LEN XXH_STRIPE_LEN
    4481              : #  define ACC_NB XXH_ACC_NB
    4482              : #endif
    4483              : 
    4484              : #ifndef XXH_PREFETCH_DIST
    4485              : #  ifdef __clang__
    4486              : #    define XXH_PREFETCH_DIST 320
    4487              : #  else
    4488              : #    if (XXH_VECTOR == XXH_AVX512)
    4489              : #      define XXH_PREFETCH_DIST 512
    4490              : #    else
    4491              : #      define XXH_PREFETCH_DIST 384
    4492              : #    endif
    4493              : #  endif  /* __clang__ */
    4494              : #endif  /* XXH_PREFETCH_DIST */
    4495              : 
    4496              : /*
    4497              :  * These macros are to generate an XXH3_accumulate() function.
    4498              :  * The two arguments select the name suffix and target attribute.
    4499              :  *
    4500              :  * The name of this symbol is XXH3_accumulate_<name>() and it calls
    4501              :  * XXH3_accumulate_512_<name>().
    4502              :  *
    4503              :  * It may be useful to hand implement this function if the compiler fails to
    4504              :  * optimize the inline function.
    4505              :  */
    4506              : #define XXH3_ACCUMULATE_TEMPLATE(name)                      \
    4507              : void                                                        \
    4508              : XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc,           \
    4509              :                        const xxh_u8* XXH_RESTRICT input,    \
    4510              :                        const xxh_u8* XXH_RESTRICT secret,   \
    4511              :                        size_t nbStripes)                    \
    4512              : {                                                           \
    4513              :     size_t n;                                               \
    4514              :     for (n = 0; n < nbStripes; n++ ) {                      \
    4515              :         const xxh_u8* const in = input + n*XXH_STRIPE_LEN;  \
    4516              :         XXH_PREFETCH(in + XXH_PREFETCH_DIST);               \
    4517              :         XXH3_accumulate_512_##name(                         \
    4518              :                  acc,                                       \
    4519              :                  in,                                        \
    4520              :                  secret + n*XXH_SECRET_CONSUME_RATE);       \
    4521              :     }                                                       \
    4522              : }
    4523              : 
    4524              : 
    4525            0 : XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
    4526              : {
    4527              :     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
    4528            0 :     XXH_memcpy(dst, &v64, sizeof(v64));
    4529            0 : }
    4530              : 
    4531              : /* Several intrinsic functions below are supposed to accept __int64 as argument,
    4532              :  * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
    4533              :  * However, several environments do not define __int64 type,
    4534              :  * requiring a workaround.
    4535              :  */
    4536              : #if !defined (__VMS) \
    4537              :   && (defined (__cplusplus) \
    4538              :   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
    4539              :     typedef int64_t xxh_i64;
    4540              : #else
    4541              :     /* the following type must have a width of 64-bit */
    4542              :     typedef long long xxh_i64;
    4543              : #endif
    4544              : 
    4545              : 
    4546              : /*
    4547              :  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
    4548              :  *
    4549              :  * It is a hardened version of UMAC, based off of FARSH's implementation.
    4550              :  *
    4551              :  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
    4552              :  * implementations, and it is ridiculously fast.
    4553              :  *
    4554              :  * We harden it by mixing the original input to the accumulators as well as the product.
    4555              :  *
    4556              :  * This means that in the (relatively likely) case of a multiply by zero, the
    4557              :  * original input is preserved.
    4558              :  *
    4559              :  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
    4560              :  * cross-pollination, as otherwise the upper and lower halves would be
    4561              :  * essentially independent.
    4562              :  *
    4563              :  * This doesn't matter on 64-bit hashes since they all get merged together in
    4564              :  * the end, so we skip the extra step.
    4565              :  *
    4566              :  * Both XXH3_64bits and XXH3_128bits use this subroutine.
    4567              :  */
    4568              : 
    4569              : #if (XXH_VECTOR == XXH_AVX512) \
    4570              :      || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
    4571              : 
    4572              : #ifndef XXH_TARGET_AVX512
    4573              : # define XXH_TARGET_AVX512  /* disable attribute target */
    4574              : #endif
    4575              : 
    4576              : XXH_FORCE_INLINE XXH_TARGET_AVX512 void
    4577              : XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
    4578              :                      const void* XXH_RESTRICT input,
    4579              :                      const void* XXH_RESTRICT secret)
    4580              : {
    4581              :     __m512i* const xacc = (__m512i *) acc;
    4582              :     XXH_ASSERT((((size_t)acc) & 63) == 0);
    4583              :     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
    4584              : 
    4585              :     {
    4586              :         /* data_vec    = input[0]; */
    4587              :         __m512i const data_vec    = _mm512_loadu_si512   (input);
    4588              :         /* key_vec     = secret[0]; */
    4589              :         __m512i const key_vec     = _mm512_loadu_si512   (secret);
    4590              :         /* data_key    = data_vec ^ key_vec; */
    4591              :         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
    4592              :         /* data_key_lo = data_key >> 32; */
    4593              :         __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
    4594              :         /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
    4595              :         __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
    4596              :         /* xacc[0] += swap(data_vec); */
    4597              :         __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
    4598              :         __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
    4599              :         /* xacc[0] += product; */
    4600              :         *xacc = _mm512_add_epi64(product, sum);
    4601              :     }
    4602              : }
    4603              : XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
    4604              : 
    4605              : /*
    4606              :  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
    4607              :  *
    4608              :  * Multiplication isn't perfect, as explained by Google in HighwayHash:
    4609              :  *
    4610              :  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
    4611              :  *  // varying degrees. In descending order of goodness, bytes
    4612              :  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
    4613              :  *  // As expected, the upper and lower bytes are much worse.
    4614              :  *
    4615              :  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
    4616              :  *
    4617              :  * Since our algorithm uses a pseudorandom secret to add some variance into the
    4618              :  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
    4619              :  *
    4620              :  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
    4621              :  * extraction.
    4622              :  *
    4623              :  * Both XXH3_64bits and XXH3_128bits use this subroutine.
    4624              :  */
    4625              : 
    4626              : XXH_FORCE_INLINE XXH_TARGET_AVX512 void
    4627              : XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
    4628              : {
    4629              :     XXH_ASSERT((((size_t)acc) & 63) == 0);
    4630              :     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
    4631              :     {   __m512i* const xacc = (__m512i*) acc;
    4632              :         const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
    4633              : 
    4634              :         /* xacc[0] ^= (xacc[0] >> 47) */
    4635              :         __m512i const acc_vec     = *xacc;
    4636              :         __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
    4637              :         /* xacc[0] ^= secret; */
    4638              :         __m512i const key_vec     = _mm512_loadu_si512   (secret);
    4639              :         __m512i const data_key    = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
    4640              : 
    4641              :         /* xacc[0] *= XXH_PRIME32_1; */
    4642              :         __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
    4643              :         __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
    4644              :         __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
    4645              :         *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
    4646              :     }
    4647              : }
    4648              : 
    4649              : XXH_FORCE_INLINE XXH_TARGET_AVX512 void
    4650              : XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
    4651              : {
    4652              :     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
    4653              :     XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
    4654              :     XXH_ASSERT(((size_t)customSecret & 63) == 0);
    4655              :     (void)(&XXH_writeLE64);
    4656              :     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
    4657              :         __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
    4658              :         __m512i const seed     = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
    4659              : 
    4660              :         const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
    4661              :               __m512i* const dest = (      __m512i*) customSecret;
    4662              :         int i;
    4663              :         XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
    4664              :         XXH_ASSERT(((size_t)dest & 63) == 0);
    4665              :         for (i=0; i < nbRounds; ++i) {
    4666              :             dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
    4667              :     }   }
    4668              : }
    4669              : 
    4670              : #endif
    4671              : 
    4672              : #if (XXH_VECTOR == XXH_AVX2) \
    4673              :     || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
    4674              : 
    4675              : #ifndef XXH_TARGET_AVX2
    4676              : # define XXH_TARGET_AVX2  /* disable attribute target */
    4677              : #endif
    4678              : 
    4679              : XXH_FORCE_INLINE XXH_TARGET_AVX2 void
    4680              : XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
    4681              :                     const void* XXH_RESTRICT input,
    4682              :                     const void* XXH_RESTRICT secret)
    4683              : {
    4684              :     XXH_ASSERT((((size_t)acc) & 31) == 0);
    4685              :     {   __m256i* const xacc    =       (__m256i *) acc;
    4686              :         /* Unaligned. This is mainly for pointer arithmetic, and because
    4687              :          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
    4688              :         const         __m256i* const xinput  = (const __m256i *) input;
    4689              :         /* Unaligned. This is mainly for pointer arithmetic, and because
    4690              :          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
    4691              :         const         __m256i* const xsecret = (const __m256i *) secret;
    4692              : 
    4693              :         size_t i;
    4694              :         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
    4695              :             /* data_vec    = xinput[i]; */
    4696              :             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
    4697              :             /* key_vec     = xsecret[i]; */
    4698              :             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
    4699              :             /* data_key    = data_vec ^ key_vec; */
    4700              :             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
    4701              :             /* data_key_lo = data_key >> 32; */
    4702              :             __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
    4703              :             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
    4704              :             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
    4705              :             /* xacc[i] += swap(data_vec); */
    4706              :             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
    4707              :             __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
    4708              :             /* xacc[i] += product; */
    4709              :             xacc[i] = _mm256_add_epi64(product, sum);
    4710              :     }   }
    4711              : }
    4712              : XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
    4713              : 
    4714              : XXH_FORCE_INLINE XXH_TARGET_AVX2 void
    4715              : XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
    4716              : {
    4717              :     XXH_ASSERT((((size_t)acc) & 31) == 0);
    4718              :     {   __m256i* const xacc = (__m256i*) acc;
    4719              :         /* Unaligned. This is mainly for pointer arithmetic, and because
    4720              :          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
    4721              :         const         __m256i* const xsecret = (const __m256i *) secret;
    4722              :         const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
    4723              : 
    4724              :         size_t i;
    4725              :         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
    4726              :             /* xacc[i] ^= (xacc[i] >> 47) */
    4727              :             __m256i const acc_vec     = xacc[i];
    4728              :             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
    4729              :             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
    4730              :             /* xacc[i] ^= xsecret; */
    4731              :             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
    4732              :             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
    4733              : 
    4734              :             /* xacc[i] *= XXH_PRIME32_1; */
    4735              :             __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
    4736              :             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
    4737              :             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
    4738              :             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
    4739              :         }
    4740              :     }
    4741              : }
    4742              : 
    4743              : XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
    4744              : {
    4745              :     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
    4746              :     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
    4747              :     XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
    4748              :     (void)(&XXH_writeLE64);
    4749              :     XXH_PREFETCH(customSecret);
    4750              :     {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
    4751              : 
    4752              :         const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
    4753              :               __m256i*       dest = (      __m256i*) customSecret;
    4754              : 
    4755              : #       if defined(__GNUC__) || defined(__clang__)
    4756              :         /*
    4757              :          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
    4758              :          *   - do not extract the secret from sse registers in the internal loop
    4759              :          *   - use less common registers, and avoid pushing these reg into stack
    4760              :          */
    4761              :         XXH_COMPILER_GUARD(dest);
    4762              : #       endif
    4763              :         XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
    4764              :         XXH_ASSERT(((size_t)dest & 31) == 0);
    4765              : 
    4766              :         /* GCC -O2 need unroll loop manually */
    4767              :         dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
    4768              :         dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
    4769              :         dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
    4770              :         dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
    4771              :         dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
    4772              :         dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
    4773              :     }
    4774              : }
    4775              : 
    4776              : #endif
    4777              : 
    4778              : /* x86dispatch always generates SSE2 */
    4779              : #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
    4780              : 
    4781              : #ifndef XXH_TARGET_SSE2
    4782              : # define XXH_TARGET_SSE2  /* disable attribute target */
    4783              : #endif
    4784              : 
    4785              : XXH_FORCE_INLINE XXH_TARGET_SSE2 void
    4786         7046 : XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
    4787              :                     const void* XXH_RESTRICT input,
    4788              :                     const void* XXH_RESTRICT secret)
    4789              : {
    4790              :     /* SSE2 is just a half-scale version of the AVX2 version. */
    4791         7046 :     XXH_ASSERT((((size_t)acc) & 15) == 0);
    4792         7046 :     {   __m128i* const xacc    =       (__m128i *) acc;
    4793              :         /* Unaligned. This is mainly for pointer arithmetic, and because
    4794              :          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
    4795         7046 :         const         __m128i* const xinput  = (const __m128i *) input;
    4796              :         /* Unaligned. This is mainly for pointer arithmetic, and because
    4797              :          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
    4798         7046 :         const         __m128i* const xsecret = (const __m128i *) secret;
    4799              : 
    4800              :         size_t i;
    4801        35230 :         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
    4802              :             /* data_vec    = xinput[i]; */
    4803        28184 :             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
    4804              :             /* key_vec     = xsecret[i]; */
    4805        56368 :             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
    4806              :             /* data_key    = data_vec ^ key_vec; */
    4807        28184 :             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
    4808              :             /* data_key_lo = data_key >> 32; */
    4809        28184 :             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
    4810              :             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
    4811        28184 :             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
    4812              :             /* xacc[i] += swap(data_vec); */
    4813        28184 :             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
    4814        28184 :             __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
    4815              :             /* xacc[i] += product; */
    4816        56368 :             xacc[i] = _mm_add_epi64(product, sum);
    4817              :     }   }
    4818         7046 : }
    4819         7410 : XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
    4820              : 
    4821              : XXH_FORCE_INLINE XXH_TARGET_SSE2 void
    4822          364 : XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
    4823              : {
    4824          364 :     XXH_ASSERT((((size_t)acc) & 15) == 0);
    4825          364 :     {   __m128i* const xacc = (__m128i*) acc;
    4826              :         /* Unaligned. This is mainly for pointer arithmetic, and because
    4827              :          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
    4828          364 :         const         __m128i* const xsecret = (const __m128i *) secret;
    4829          364 :         const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
    4830              : 
    4831              :         size_t i;
    4832         1820 :         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
    4833              :             /* xacc[i] ^= (xacc[i] >> 47) */
    4834         1456 :             __m128i const acc_vec     = xacc[i];
    4835         1456 :             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
    4836         1456 :             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
    4837              :             /* xacc[i] ^= xsecret[i]; */
    4838         2912 :             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
    4839         1456 :             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
    4840              : 
    4841              :             /* xacc[i] *= XXH_PRIME32_1; */
    4842         1456 :             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
    4843         1456 :             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
    4844         1456 :             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
    4845         2912 :             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
    4846              :         }
    4847              :     }
    4848          364 : }
    4849              : 
    4850            0 : XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
    4851              : {
    4852              :     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
    4853              :     (void)(&XXH_writeLE64);
    4854            0 :     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
    4855              : 
    4856              : #       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
    4857              :         /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
    4858              :         XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
    4859              :         __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
    4860              : #       else
    4861            0 :         __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
    4862              : #       endif
    4863              :         int i;
    4864              : 
    4865            0 :         const void* const src16 = XXH3_kSecret;
    4866            0 :         __m128i* dst16 = (__m128i*) customSecret;
    4867              : #       if defined(__GNUC__) || defined(__clang__)
    4868              :         /*
    4869              :          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
    4870              :          *   - do not extract the secret from sse registers in the internal loop
    4871              :          *   - use less common registers, and avoid pushing these reg into stack
    4872              :          */
    4873            0 :         XXH_COMPILER_GUARD(dst16);
    4874              : #       endif
    4875            0 :         XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
    4876            0 :         XXH_ASSERT(((size_t)dst16 & 15) == 0);
    4877              : 
    4878            0 :         for (i=0; i < nbRounds; ++i) {
    4879            0 :             dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
    4880              :     }   }
    4881            0 : }
    4882              : 
    4883              : #endif
    4884              : 
    4885              : #if (XXH_VECTOR == XXH_NEON)
    4886              : 
    4887              : /* forward declarations for the scalar routines */
    4888              : XXH_FORCE_INLINE void
    4889              : XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
    4890              :                  void const* XXH_RESTRICT secret, size_t lane);
    4891              : 
    4892              : XXH_FORCE_INLINE void
    4893              : XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
    4894              :                          void const* XXH_RESTRICT secret, size_t lane);
    4895              : 
    4896              : /*!
    4897              :  * @internal
    4898              :  * @brief The bulk processing loop for NEON and WASM SIMD128.
    4899              :  *
    4900              :  * The NEON code path is actually partially scalar when running on AArch64. This
    4901              :  * is to optimize the pipelining and can have up to 15% speedup depending on the
    4902              :  * CPU, and it also mitigates some GCC codegen issues.
    4903              :  *
    4904              :  * @see XXH3_NEON_LANES for configuring this and details about this optimization.
    4905              :  *
    4906              :  * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
    4907              :  * integers instead of the other platforms which mask full 64-bit vectors,
    4908              :  * so the setup is more complicated than just shifting right.
    4909              :  *
    4910              :  * Additionally, there is an optimization for 4 lanes at once noted below.
    4911              :  *
    4912              :  * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
    4913              :  * there needs to be *three* versions of the accumulate operation used
    4914              :  * for the remaining 2 lanes.
    4915              :  *
    4916              :  * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
    4917              :  * nearly perfectly.
    4918              :  */
    4919              : 
    4920              : XXH_FORCE_INLINE void
    4921              : XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
    4922              :                     const void* XXH_RESTRICT input,
    4923              :                     const void* XXH_RESTRICT secret)
    4924              : {
    4925              :     XXH_ASSERT((((size_t)acc) & 15) == 0);
    4926              :     XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
    4927              :     {   /* GCC for darwin arm64 does not like aliasing here */
    4928              :         xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
    4929              :         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
    4930              :         uint8_t const* xinput = (const uint8_t *) input;
    4931              :         uint8_t const* xsecret  = (const uint8_t *) secret;
    4932              : 
    4933              :         size_t i;
    4934              : #ifdef __wasm_simd128__
    4935              :         /*
    4936              :          * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
    4937              :          * is constant propagated, which results in it converting it to this
    4938              :          * inside the loop:
    4939              :          *
    4940              :          *    a = v128.load(XXH3_kSecret +  0 + $secret_offset, offset = 0)
    4941              :          *    b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
    4942              :          *    ...
    4943              :          *
    4944              :          * This requires a full 32-bit address immediate (and therefore a 6 byte
    4945              :          * instruction) as well as an add for each offset.
    4946              :          *
    4947              :          * Putting an asm guard prevents it from folding (at the cost of losing
    4948              :          * the alignment hint), and uses the free offset in `v128.load` instead
    4949              :          * of adding secret_offset each time which overall reduces code size by
    4950              :          * about a kilobyte and improves performance.
    4951              :          */
    4952              :         XXH_COMPILER_GUARD(xsecret);
    4953              : #endif
    4954              :         /* Scalar lanes use the normal scalarRound routine */
    4955              :         for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
    4956              :             XXH3_scalarRound(acc, input, secret, i);
    4957              :         }
    4958              :         i = 0;
    4959              :         /* 4 NEON lanes at a time. */
    4960              :         for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
    4961              :             /* data_vec = xinput[i]; */
    4962              :             uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput  + (i * 16));
    4963              :             uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput  + ((i+1) * 16));
    4964              :             /* key_vec  = xsecret[i];  */
    4965              :             uint64x2_t key_vec_1  = XXH_vld1q_u64(xsecret + (i * 16));
    4966              :             uint64x2_t key_vec_2  = XXH_vld1q_u64(xsecret + ((i+1) * 16));
    4967              :             /* data_swap = swap(data_vec) */
    4968              :             uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
    4969              :             uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
    4970              :             /* data_key = data_vec ^ key_vec; */
    4971              :             uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
    4972              :             uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
    4973              : 
    4974              :             /*
    4975              :              * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
    4976              :              * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
    4977              :              * get one vector with the low 32 bits of each lane, and one vector
    4978              :              * with the high 32 bits of each lane.
    4979              :              *
    4980              :              * The intrinsic returns a double vector because the original ARMv7-a
    4981              :              * instruction modified both arguments in place. AArch64 and SIMD128 emit
    4982              :              * two instructions from this intrinsic.
    4983              :              *
    4984              :              *  [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
    4985              :              *  [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
    4986              :              */
    4987              :             uint32x4x2_t unzipped = vuzpq_u32(
    4988              :                 vreinterpretq_u32_u64(data_key_1),
    4989              :                 vreinterpretq_u32_u64(data_key_2)
    4990              :             );
    4991              :             /* data_key_lo = data_key & 0xFFFFFFFF */
    4992              :             uint32x4_t data_key_lo = unzipped.val[0];
    4993              :             /* data_key_hi = data_key >> 32 */
    4994              :             uint32x4_t data_key_hi = unzipped.val[1];
    4995              :             /*
    4996              :              * Then, we can split the vectors horizontally and multiply which, as for most
    4997              :              * widening intrinsics, have a variant that works on both high half vectors
    4998              :              * for free on AArch64. A similar instruction is available on SIMD128.
    4999              :              *
    5000              :              * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
    5001              :              */
    5002              :             uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
    5003              :             uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
    5004              :             /*
    5005              :              * Clang reorders
    5006              :              *    a += b * c;     // umlal   swap.2d, dkl.2s, dkh.2s
    5007              :              *    c += a;         // add     acc.2d, acc.2d, swap.2d
    5008              :              * to
    5009              :              *    c += a;         // add     acc.2d, acc.2d, swap.2d
    5010              :              *    c += b * c;     // umlal   acc.2d, dkl.2s, dkh.2s
    5011              :              *
    5012              :              * While it would make sense in theory since the addition is faster,
    5013              :              * for reasons likely related to umlal being limited to certain NEON
    5014              :              * pipelines, this is worse. A compiler guard fixes this.
    5015              :              */
    5016              :             XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
    5017              :             XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
    5018              :             /* xacc[i] = acc_vec + sum; */
    5019              :             xacc[i]   = vaddq_u64(xacc[i], sum_1);
    5020              :             xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
    5021              :         }
    5022              :         /* Operate on the remaining NEON lanes 2 at a time. */
    5023              :         for (; i < XXH3_NEON_LANES / 2; i++) {
    5024              :             /* data_vec = xinput[i]; */
    5025              :             uint64x2_t data_vec = XXH_vld1q_u64(xinput  + (i * 16));
    5026              :             /* key_vec  = xsecret[i];  */
    5027              :             uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
    5028              :             /* acc_vec_2 = swap(data_vec) */
    5029              :             uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
    5030              :             /* data_key = data_vec ^ key_vec; */
    5031              :             uint64x2_t data_key = veorq_u64(data_vec, key_vec);
    5032              :             /* For two lanes, just use VMOVN and VSHRN. */
    5033              :             /* data_key_lo = data_key & 0xFFFFFFFF; */
    5034              :             uint32x2_t data_key_lo = vmovn_u64(data_key);
    5035              :             /* data_key_hi = data_key >> 32; */
    5036              :             uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
    5037              :             /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
    5038              :             uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
    5039              :             /* Same Clang workaround as before */
    5040              :             XXH_COMPILER_GUARD_CLANG_NEON(sum);
    5041              :             /* xacc[i] = acc_vec + sum; */
    5042              :             xacc[i] = vaddq_u64 (xacc[i], sum);
    5043              :         }
    5044              :     }
    5045              : }
    5046              : XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
    5047              : 
    5048              : XXH_FORCE_INLINE void
    5049              : XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
    5050              : {
    5051              :     XXH_ASSERT((((size_t)acc) & 15) == 0);
    5052              : 
    5053              :     {   xxh_aliasing_uint64x2_t* xacc       = (xxh_aliasing_uint64x2_t*) acc;
    5054              :         uint8_t const* xsecret = (uint8_t const*) secret;
    5055              : 
    5056              :         size_t i;
    5057              :         /* WASM uses operator overloads and doesn't need these. */
    5058              : #ifndef __wasm_simd128__
    5059              :         /* { prime32_1, prime32_1 } */
    5060              :         uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
    5061              :         /* { 0, prime32_1, 0, prime32_1 } */
    5062              :         uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
    5063              : #endif
    5064              : 
    5065              :         /* AArch64 uses both scalar and neon at the same time */
    5066              :         for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
    5067              :             XXH3_scalarScrambleRound(acc, secret, i);
    5068              :         }
    5069              :         for (i=0; i < XXH3_NEON_LANES / 2; i++) {
    5070              :             /* xacc[i] ^= (xacc[i] >> 47); */
    5071              :             uint64x2_t acc_vec  = xacc[i];
    5072              :             uint64x2_t shifted  = vshrq_n_u64(acc_vec, 47);
    5073              :             uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
    5074              : 
    5075              :             /* xacc[i] ^= xsecret[i]; */
    5076              :             uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
    5077              :             uint64x2_t data_key = veorq_u64(data_vec, key_vec);
    5078              :             /* xacc[i] *= XXH_PRIME32_1 */
    5079              : #ifdef __wasm_simd128__
    5080              :             /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
    5081              :             xacc[i] = data_key * XXH_PRIME32_1;
    5082              : #else
    5083              :             /*
    5084              :              * Expanded version with portable NEON intrinsics
    5085              :              *
    5086              :              *    lo(x) * lo(y) + (hi(x) * lo(y) << 32)
    5087              :              *
    5088              :              * prod_hi = hi(data_key) * lo(prime) << 32
    5089              :              *
    5090              :              * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
    5091              :              * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
    5092              :              * and avoid the shift.
    5093              :              */
    5094              :             uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
    5095              :             /* Extract low bits for vmlal_u32  */
    5096              :             uint32x2_t data_key_lo = vmovn_u64(data_key);
    5097              :             /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
    5098              :             xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
    5099              : #endif
    5100              :         }
    5101              :     }
    5102              : }
    5103              : #endif
    5104              : 
    5105              : #if (XXH_VECTOR == XXH_VSX)
    5106              : 
    5107              : XXH_FORCE_INLINE void
    5108              : XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
    5109              :                     const void* XXH_RESTRICT input,
    5110              :                     const void* XXH_RESTRICT secret)
    5111              : {
    5112              :     /* presumed aligned */
    5113              :     xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
    5114              :     xxh_u8 const* const xinput   = (xxh_u8 const*) input;   /* no alignment restriction */
    5115              :     xxh_u8 const* const xsecret  = (xxh_u8 const*) secret;    /* no alignment restriction */
    5116              :     xxh_u64x2 const v32 = { 32, 32 };
    5117              :     size_t i;
    5118              :     for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
    5119              :         /* data_vec = xinput[i]; */
    5120              :         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
    5121              :         /* key_vec = xsecret[i]; */
    5122              :         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
    5123              :         xxh_u64x2 const data_key = data_vec ^ key_vec;
    5124              :         /* shuffled = (data_key << 32) | (data_key >> 32); */
    5125              :         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
    5126              :         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
    5127              :         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
    5128              :         /* acc_vec = xacc[i]; */
    5129              :         xxh_u64x2 acc_vec        = xacc[i];
    5130              :         acc_vec += product;
    5131              : 
    5132              :         /* swap high and low halves */
    5133              : #ifdef __s390x__
    5134              :         acc_vec += vec_permi(data_vec, data_vec, 2);
    5135              : #else
    5136              :         acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
    5137              : #endif
    5138              :         xacc[i] = acc_vec;
    5139              :     }
    5140              : }
    5141              : XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
    5142              : 
    5143              : XXH_FORCE_INLINE void
    5144              : XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
    5145              : {
    5146              :     XXH_ASSERT((((size_t)acc) & 15) == 0);
    5147              : 
    5148              :     {   xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
    5149              :         const xxh_u8* const xsecret = (const xxh_u8*) secret;
    5150              :         /* constants */
    5151              :         xxh_u64x2 const v32  = { 32, 32 };
    5152              :         xxh_u64x2 const v47 = { 47, 47 };
    5153              :         xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
    5154              :         size_t i;
    5155              :         for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
    5156              :             /* xacc[i] ^= (xacc[i] >> 47); */
    5157              :             xxh_u64x2 const acc_vec  = xacc[i];
    5158              :             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
    5159              : 
    5160              :             /* xacc[i] ^= xsecret[i]; */
    5161              :             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
    5162              :             xxh_u64x2 const data_key = data_vec ^ key_vec;
    5163              : 
    5164              :             /* xacc[i] *= XXH_PRIME32_1 */
    5165              :             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
    5166              :             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
    5167              :             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
    5168              :             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
    5169              :             xacc[i] = prod_odd + (prod_even << v32);
    5170              :     }   }
    5171              : }
    5172              : 
    5173              : #endif
    5174              : 
    5175              : #if (XXH_VECTOR == XXH_SVE)
    5176              : 
    5177              : XXH_FORCE_INLINE void
    5178              : XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
    5179              :                    const void* XXH_RESTRICT input,
    5180              :                    const void* XXH_RESTRICT secret)
    5181              : {
    5182              :     uint64_t *xacc = (uint64_t *)acc;
    5183              :     const uint64_t *xinput = (const uint64_t *)(const void *)input;
    5184              :     const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
    5185              :     svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
    5186              :     uint64_t element_count = svcntd();
    5187              :     if (element_count >= 8) {
    5188              :         svbool_t mask = svptrue_pat_b64(SV_VL8);
    5189              :         svuint64_t vacc = svld1_u64(mask, xacc);
    5190              :         ACCRND(vacc, 0);
    5191              :         svst1_u64(mask, xacc, vacc);
    5192              :     } else if (element_count == 2) {   /* sve128 */
    5193              :         svbool_t mask = svptrue_pat_b64(SV_VL2);
    5194              :         svuint64_t acc0 = svld1_u64(mask, xacc + 0);
    5195              :         svuint64_t acc1 = svld1_u64(mask, xacc + 2);
    5196              :         svuint64_t acc2 = svld1_u64(mask, xacc + 4);
    5197              :         svuint64_t acc3 = svld1_u64(mask, xacc + 6);
    5198              :         ACCRND(acc0, 0);
    5199              :         ACCRND(acc1, 2);
    5200              :         ACCRND(acc2, 4);
    5201              :         ACCRND(acc3, 6);
    5202              :         svst1_u64(mask, xacc + 0, acc0);
    5203              :         svst1_u64(mask, xacc + 2, acc1);
    5204              :         svst1_u64(mask, xacc + 4, acc2);
    5205              :         svst1_u64(mask, xacc + 6, acc3);
    5206              :     } else {
    5207              :         svbool_t mask = svptrue_pat_b64(SV_VL4);
    5208              :         svuint64_t acc0 = svld1_u64(mask, xacc + 0);
    5209              :         svuint64_t acc1 = svld1_u64(mask, xacc + 4);
    5210              :         ACCRND(acc0, 0);
    5211              :         ACCRND(acc1, 4);
    5212              :         svst1_u64(mask, xacc + 0, acc0);
    5213              :         svst1_u64(mask, xacc + 4, acc1);
    5214              :     }
    5215              : }
    5216              : 
    5217              : XXH_FORCE_INLINE void
    5218              : XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
    5219              :                const xxh_u8* XXH_RESTRICT input,
    5220              :                const xxh_u8* XXH_RESTRICT secret,
    5221              :                size_t nbStripes)
    5222              : {
    5223              :     if (nbStripes != 0) {
    5224              :         uint64_t *xacc = (uint64_t *)acc;
    5225              :         const uint64_t *xinput = (const uint64_t *)(const void *)input;
    5226              :         const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
    5227              :         svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
    5228              :         uint64_t element_count = svcntd();
    5229              :         if (element_count >= 8) {
    5230              :             svbool_t mask = svptrue_pat_b64(SV_VL8);
    5231              :             svuint64_t vacc = svld1_u64(mask, xacc + 0);
    5232              :             do {
    5233              :                 /* svprfd(svbool_t, void *, enum svfprop); */
    5234              :                 svprfd(mask, xinput + 128, SV_PLDL1STRM);
    5235              :                 ACCRND(vacc, 0);
    5236              :                 xinput += 8;
    5237              :                 xsecret += 1;
    5238              :                 nbStripes--;
    5239              :            } while (nbStripes != 0);
    5240              : 
    5241              :            svst1_u64(mask, xacc + 0, vacc);
    5242              :         } else if (element_count == 2) { /* sve128 */
    5243              :             svbool_t mask = svptrue_pat_b64(SV_VL2);
    5244              :             svuint64_t acc0 = svld1_u64(mask, xacc + 0);
    5245              :             svuint64_t acc1 = svld1_u64(mask, xacc + 2);
    5246              :             svuint64_t acc2 = svld1_u64(mask, xacc + 4);
    5247              :             svuint64_t acc3 = svld1_u64(mask, xacc + 6);
    5248              :             do {
    5249              :                 svprfd(mask, xinput + 128, SV_PLDL1STRM);
    5250              :                 ACCRND(acc0, 0);
    5251              :                 ACCRND(acc1, 2);
    5252              :                 ACCRND(acc2, 4);
    5253              :                 ACCRND(acc3, 6);
    5254              :                 xinput += 8;
    5255              :                 xsecret += 1;
    5256              :                 nbStripes--;
    5257              :            } while (nbStripes != 0);
    5258              : 
    5259              :            svst1_u64(mask, xacc + 0, acc0);
    5260              :            svst1_u64(mask, xacc + 2, acc1);
    5261              :            svst1_u64(mask, xacc + 4, acc2);
    5262              :            svst1_u64(mask, xacc + 6, acc3);
    5263              :         } else {
    5264              :             svbool_t mask = svptrue_pat_b64(SV_VL4);
    5265              :             svuint64_t acc0 = svld1_u64(mask, xacc + 0);
    5266              :             svuint64_t acc1 = svld1_u64(mask, xacc + 4);
    5267              :             do {
    5268              :                 svprfd(mask, xinput + 128, SV_PLDL1STRM);
    5269              :                 ACCRND(acc0, 0);
    5270              :                 ACCRND(acc1, 4);
    5271              :                 xinput += 8;
    5272              :                 xsecret += 1;
    5273              :                 nbStripes--;
    5274              :            } while (nbStripes != 0);
    5275              : 
    5276              :            svst1_u64(mask, xacc + 0, acc0);
    5277              :            svst1_u64(mask, xacc + 4, acc1);
    5278              :        }
    5279              :     }
    5280              : }
    5281              : 
    5282              : #endif
    5283              : 
    5284              : /* scalar variants - universal */
    5285              : 
    5286              : #if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
    5287              : /*
    5288              :  * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
    5289              :  * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
    5290              :  *
    5291              :  * While this might not seem like much, as AArch64 is a 64-bit architecture, only
    5292              :  * big Cortex designs have a full 64-bit multiplier.
    5293              :  *
    5294              :  * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
    5295              :  * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
    5296              :  * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
    5297              :  *
    5298              :  * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
    5299              :  * not have this penalty and does the mask automatically.
    5300              :  */
    5301              : XXH_FORCE_INLINE xxh_u64
    5302              : XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
    5303              : {
    5304              :     xxh_u64 ret;
    5305              :     /* note: %x = 64-bit register, %w = 32-bit register */
    5306              :     __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
    5307              :     return ret;
    5308              : }
    5309              : #else
    5310              : XXH_FORCE_INLINE xxh_u64
    5311            0 : XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
    5312              : {
    5313            0 :     return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
    5314              : }
    5315              : #endif
    5316              : 
    5317              : /*!
    5318              :  * @internal
    5319              :  * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
    5320              :  *
    5321              :  * This is extracted to its own function because the NEON path uses a combination
    5322              :  * of NEON and scalar.
    5323              :  */
    5324              : XXH_FORCE_INLINE void
    5325            0 : XXH3_scalarRound(void* XXH_RESTRICT acc,
    5326              :                  void const* XXH_RESTRICT input,
    5327              :                  void const* XXH_RESTRICT secret,
    5328              :                  size_t lane)
    5329              : {
    5330            0 :     xxh_u64* xacc = (xxh_u64*) acc;
    5331            0 :     xxh_u8 const* xinput  = (xxh_u8 const*) input;
    5332            0 :     xxh_u8 const* xsecret = (xxh_u8 const*) secret;
    5333            0 :     XXH_ASSERT(lane < XXH_ACC_NB);
    5334            0 :     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
    5335              :     {
    5336            0 :         xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
    5337            0 :         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
    5338            0 :         xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
    5339            0 :         xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
    5340              :     }
    5341            0 : }
    5342              : 
    5343              : /*!
    5344              :  * @internal
    5345              :  * @brief Processes a 64 byte block of data using the scalar path.
    5346              :  */
    5347              : XXH_FORCE_INLINE void
    5348            0 : XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
    5349              :                      const void* XXH_RESTRICT input,
    5350              :                      const void* XXH_RESTRICT secret)
    5351              : {
    5352              :     size_t i;
    5353              :     /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
    5354              : #if defined(__GNUC__) && !defined(__clang__) \
    5355              :   && (defined(__arm__) || defined(__thumb2__)) \
    5356              :   && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
    5357              :   && XXH_SIZE_OPT <= 0
    5358              : #  pragma GCC unroll 8
    5359              : #endif
    5360            0 :     for (i=0; i < XXH_ACC_NB; i++) {
    5361            0 :         XXH3_scalarRound(acc, input, secret, i);
    5362              :     }
    5363            0 : }
    5364            0 : XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
    5365              : 
    5366              : /*!
    5367              :  * @internal
    5368              :  * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
    5369              :  *
    5370              :  * This is extracted to its own function because the NEON path uses a combination
    5371              :  * of NEON and scalar.
    5372              :  */
    5373              : XXH_FORCE_INLINE void
    5374            0 : XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
    5375              :                          void const* XXH_RESTRICT secret,
    5376              :                          size_t lane)
    5377              : {
    5378            0 :     xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
    5379            0 :     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
    5380            0 :     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
    5381            0 :     XXH_ASSERT(lane < XXH_ACC_NB);
    5382              :     {
    5383            0 :         xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
    5384            0 :         xxh_u64 acc64 = xacc[lane];
    5385            0 :         acc64 = XXH_xorshift64(acc64, 47);
    5386            0 :         acc64 ^= key64;
    5387            0 :         acc64 *= XXH_PRIME32_1;
    5388            0 :         xacc[lane] = acc64;
    5389              :     }
    5390            0 : }
    5391              : 
    5392              : /*!
    5393              :  * @internal
    5394              :  * @brief Scrambles the accumulators after a large chunk has been read
    5395              :  */
    5396              : XXH_FORCE_INLINE void
    5397            0 : XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
    5398              : {
    5399              :     size_t i;
    5400            0 :     for (i=0; i < XXH_ACC_NB; i++) {
    5401            0 :         XXH3_scalarScrambleRound(acc, secret, i);
    5402              :     }
    5403            0 : }
    5404              : 
    5405              : XXH_FORCE_INLINE void
    5406            0 : XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
    5407              : {
    5408              :     /*
    5409              :      * We need a separate pointer for the hack below,
    5410              :      * which requires a non-const pointer.
    5411              :      * Any decent compiler will optimize this out otherwise.
    5412              :      */
    5413            0 :     const xxh_u8* kSecretPtr = XXH3_kSecret;
    5414              :     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
    5415              : 
    5416              : #if defined(__GNUC__) && defined(__aarch64__)
    5417              :     /*
    5418              :      * UGLY HACK:
    5419              :      * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
    5420              :      * placed sequentially, in order, at the top of the unrolled loop.
    5421              :      *
    5422              :      * While MOVK is great for generating constants (2 cycles for a 64-bit
    5423              :      * constant compared to 4 cycles for LDR), it fights for bandwidth with
    5424              :      * the arithmetic instructions.
    5425              :      *
    5426              :      *   I   L   S
    5427              :      * MOVK
    5428              :      * MOVK
    5429              :      * MOVK
    5430              :      * MOVK
    5431              :      * ADD
    5432              :      * SUB      STR
    5433              :      *          STR
    5434              :      * By forcing loads from memory (as the asm line causes the compiler to assume
    5435              :      * that XXH3_kSecretPtr has been changed), the pipelines are used more
    5436              :      * efficiently:
    5437              :      *   I   L   S
    5438              :      *      LDR
    5439              :      *  ADD LDR
    5440              :      *  SUB     STR
    5441              :      *          STR
    5442              :      *
    5443              :      * See XXH3_NEON_LANES for details on the pipsline.
    5444              :      *
    5445              :      * XXH3_64bits_withSeed, len == 256, Snapdragon 835
    5446              :      *   without hack: 2654.4 MB/s
    5447              :      *   with hack:    3202.9 MB/s
    5448              :      */
    5449              :     XXH_COMPILER_GUARD(kSecretPtr);
    5450              : #endif
    5451            0 :     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
    5452              :         int i;
    5453            0 :         for (i=0; i < nbRounds; i++) {
    5454              :             /*
    5455              :              * The asm hack causes the compiler to assume that kSecretPtr aliases with
    5456              :              * customSecret, and on aarch64, this prevented LDP from merging two
    5457              :              * loads together for free. Putting the loads together before the stores
    5458              :              * properly generates LDP.
    5459              :              */
    5460            0 :             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
    5461            0 :             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
    5462            0 :             XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
    5463            0 :             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
    5464              :     }   }
    5465            0 : }
    5466              : 
    5467              : 
    5468              : typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
    5469              : typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
    5470              : typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
    5471              : 
    5472              : 
    5473              : #if (XXH_VECTOR == XXH_AVX512)
    5474              : 
    5475              : #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
    5476              : #define XXH3_accumulate     XXH3_accumulate_avx512
    5477              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
    5478              : #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
    5479              : 
    5480              : #elif (XXH_VECTOR == XXH_AVX2)
    5481              : 
    5482              : #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
    5483              : #define XXH3_accumulate     XXH3_accumulate_avx2
    5484              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
    5485              : #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
    5486              : 
    5487              : #elif (XXH_VECTOR == XXH_SSE2)
    5488              : 
    5489              : #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
    5490              : #define XXH3_accumulate     XXH3_accumulate_sse2
    5491              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
    5492              : #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
    5493              : 
    5494              : #elif (XXH_VECTOR == XXH_NEON)
    5495              : 
    5496              : #define XXH3_accumulate_512 XXH3_accumulate_512_neon
    5497              : #define XXH3_accumulate     XXH3_accumulate_neon
    5498              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
    5499              : #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
    5500              : 
    5501              : #elif (XXH_VECTOR == XXH_VSX)
    5502              : 
    5503              : #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
    5504              : #define XXH3_accumulate     XXH3_accumulate_vsx
    5505              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
    5506              : #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
    5507              : 
    5508              : #elif (XXH_VECTOR == XXH_SVE)
    5509              : #define XXH3_accumulate_512 XXH3_accumulate_512_sve
    5510              : #define XXH3_accumulate     XXH3_accumulate_sve
    5511              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
    5512              : #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
    5513              : 
    5514              : #else /* scalar */
    5515              : 
    5516              : #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
    5517              : #define XXH3_accumulate     XXH3_accumulate_scalar
    5518              : #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
    5519              : #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
    5520              : 
    5521              : #endif
    5522              : 
    5523              : #if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
    5524              : #  undef XXH3_initCustomSecret
    5525              : #  define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
    5526              : #endif
    5527              : 
    5528              : XXH_FORCE_INLINE void
    5529           98 : XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
    5530              :                       const xxh_u8* XXH_RESTRICT input, size_t len,
    5531              :                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
    5532              :                             XXH3_f_accumulate f_acc,
    5533              :                             XXH3_f_scrambleAcc f_scramble)
    5534              : {
    5535           98 :     size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
    5536           98 :     size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
    5537           98 :     size_t const nb_blocks = (len - 1) / block_len;
    5538              : 
    5539              :     size_t n;
    5540              : 
    5541           98 :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    5542              : 
    5543          413 :     for (n = 0; n < nb_blocks; n++) {
    5544          315 :         f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
    5545          315 :         f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
    5546              :     }
    5547              : 
    5548              :     /* last partial block */
    5549           98 :     XXH_ASSERT(len > XXH_STRIPE_LEN);
    5550           98 :     {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
    5551           98 :         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
    5552           98 :         f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
    5553              : 
    5554              :         /* last stripe */
    5555           98 :         {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
    5556              : #define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
    5557           98 :             XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
    5558              :     }   }
    5559           98 : }
    5560              : 
    5561              : XXH_FORCE_INLINE xxh_u64
    5562          824 : XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
    5563              : {
    5564          824 :     return XXH3_mul128_fold64(
    5565          824 :                acc[0] ^ XXH_readLE64(secret),
    5566          824 :                acc[1] ^ XXH_readLE64(secret+8) );
    5567              : }
    5568              : 
    5569              : static XXH64_hash_t
    5570          206 : XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
    5571              : {
    5572          206 :     xxh_u64 result64 = start;
    5573          206 :     size_t i = 0;
    5574              : 
    5575         1030 :     for (i = 0; i < 4; i++) {
    5576          824 :         result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
    5577              : #if defined(__clang__)                                /* Clang */ \
    5578              :     && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
    5579              :     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
    5580              :     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
    5581              :         /*
    5582              :          * UGLY HACK:
    5583              :          * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
    5584              :          * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
    5585              :          * XXH3_64bits, len == 256, Snapdragon 835:
    5586              :          *   without hack: 2063.7 MB/s
    5587              :          *   with hack:    2560.7 MB/s
    5588              :          */
    5589              :         XXH_COMPILER_GUARD(result64);
    5590              : #endif
    5591              :     }
    5592              : 
    5593          206 :     return XXH3_avalanche(result64);
    5594              : }
    5595              : 
    5596              : #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
    5597              :                         XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
    5598              : 
    5599              : XXH_FORCE_INLINE XXH64_hash_t
    5600            0 : XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
    5601              :                            const void* XXH_RESTRICT secret, size_t secretSize,
    5602              :                            XXH3_f_accumulate f_acc,
    5603              :                            XXH3_f_scrambleAcc f_scramble)
    5604              : {
    5605            0 :     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
    5606              : 
    5607            0 :     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
    5608              : 
    5609              :     /* converge into final hash */
    5610              :     XXH_STATIC_ASSERT(sizeof(acc) == 64);
    5611              :     /* do not align on 8, so that the secret is different from the accumulator */
    5612              : #define XXH_SECRET_MERGEACCS_START 11
    5613            0 :     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    5614            0 :     return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
    5615              : }
    5616              : 
    5617              : /*
    5618              :  * It's important for performance to transmit secret's size (when it's static)
    5619              :  * so that the compiler can properly optimize the vectorized loop.
    5620              :  * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
    5621              :  * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
    5622              :  * breaks -Og, this is XXH_NO_INLINE.
    5623              :  */
    5624              : XXH3_WITH_SECRET_INLINE XXH64_hash_t
    5625            0 : XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
    5626              :                              XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
    5627              : {
    5628              :     (void)seed64;
    5629            0 :     return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
    5630              : }
    5631              : 
    5632              : /*
    5633              :  * It's preferable for performance that XXH3_hashLong is not inlined,
    5634              :  * as it results in a smaller function for small data, easier to the instruction cache.
    5635              :  * Note that inside this no_inline function, we do inline the internal loop,
    5636              :  * and provide a statically defined secret size to allow optimization of vector loop.
    5637              :  */
    5638              : XXH_NO_INLINE XXH_PUREF XXH64_hash_t
    5639            0 : XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
    5640              :                           XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
    5641              : {
    5642              :     (void)seed64; (void)secret; (void)secretLen;
    5643            0 :     return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
    5644              : }
    5645              : 
    5646              : /*
    5647              :  * XXH3_hashLong_64b_withSeed():
    5648              :  * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
    5649              :  * and then use this key for long mode hashing.
    5650              :  *
    5651              :  * This operation is decently fast but nonetheless costs a little bit of time.
    5652              :  * Try to avoid it whenever possible (typically when seed==0).
    5653              :  *
    5654              :  * It's important for performance that XXH3_hashLong is not inlined. Not sure
    5655              :  * why (uop cache maybe?), but the difference is large and easily measurable.
    5656              :  */
    5657              : XXH_FORCE_INLINE XXH64_hash_t
    5658            0 : XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
    5659              :                                     XXH64_hash_t seed,
    5660              :                                     XXH3_f_accumulate f_acc,
    5661              :                                     XXH3_f_scrambleAcc f_scramble,
    5662              :                                     XXH3_f_initCustomSecret f_initSec)
    5663              : {
    5664              : #if XXH_SIZE_OPT <= 0
    5665            0 :     if (seed == 0)
    5666            0 :         return XXH3_hashLong_64b_internal(input, len,
    5667              :                                           XXH3_kSecret, sizeof(XXH3_kSecret),
    5668              :                                           f_acc, f_scramble);
    5669              : #endif
    5670              :     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
    5671            0 :         f_initSec(secret, seed);
    5672            0 :         return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
    5673              :                                           f_acc, f_scramble);
    5674              :     }
    5675              : }
    5676              : 
    5677              : /*
    5678              :  * It's important for performance that XXH3_hashLong is not inlined.
    5679              :  */
    5680              : XXH_NO_INLINE XXH64_hash_t
    5681            0 : XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
    5682              :                            XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
    5683              : {
    5684              :     (void)secret; (void)secretLen;
    5685            0 :     return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
    5686              :                 XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
    5687              : }
    5688              : 
    5689              : 
    5690              : typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
    5691              :                                           XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
    5692              : 
    5693              : XXH_FORCE_INLINE XXH64_hash_t
    5694            0 : XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
    5695              :                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
    5696              :                      XXH3_hashLong64_f f_hashLong)
    5697              : {
    5698            0 :     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
    5699              :     /*
    5700              :      * If an action is to be taken if `secretLen` condition is not respected,
    5701              :      * it should be done here.
    5702              :      * For now, it's a contract pre-condition.
    5703              :      * Adding a check and a branch here would cost performance at every hash.
    5704              :      * Also, note that function signature doesn't offer room to return an error.
    5705              :      */
    5706            0 :     if (len <= 16)
    5707            0 :         return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
    5708            0 :     if (len <= 128)
    5709            0 :         return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    5710            0 :     if (len <= XXH3_MIDSIZE_MAX)
    5711            0 :         return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    5712            0 :     return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
    5713              : }
    5714              : 
    5715              : 
    5716              : /* ===   Public entry point   === */
    5717              : 
    5718              : /*! @ingroup XXH3_family */
    5719            0 : XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
    5720              : {
    5721            0 :     return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
    5722              : }
    5723              : 
    5724              : /*! @ingroup XXH3_family */
    5725              : XXH_PUBLIC_API XXH64_hash_t
    5726            0 : XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
    5727              : {
    5728            0 :     return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
    5729              : }
    5730              : 
    5731              : /*! @ingroup XXH3_family */
    5732              : XXH_PUBLIC_API XXH64_hash_t
    5733            0 : XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
    5734              : {
    5735            0 :     return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
    5736              : }
    5737              : 
    5738              : XXH_PUBLIC_API XXH64_hash_t
    5739            0 : XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
    5740              : {
    5741            0 :     if (length <= XXH3_MIDSIZE_MAX)
    5742            0 :         return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
    5743            0 :     return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
    5744              : }
    5745              : 
    5746              : 
    5747              : /* ===   XXH3 streaming   === */
    5748              : #ifndef XXH_NO_STREAM
    5749              : /*
    5750              :  * Malloc's a pointer that is always aligned to align.
    5751              :  *
    5752              :  * This must be freed with `XXH_alignedFree()`.
    5753              :  *
    5754              :  * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
    5755              :  * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
    5756              :  * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
    5757              :  *
    5758              :  * This underalignment previously caused a rather obvious crash which went
    5759              :  * completely unnoticed due to XXH3_createState() not actually being tested.
    5760              :  * Credit to RedSpah for noticing this bug.
    5761              :  *
    5762              :  * The alignment is done manually: Functions like posix_memalign or _mm_malloc
    5763              :  * are avoided: To maintain portability, we would have to write a fallback
    5764              :  * like this anyways, and besides, testing for the existence of library
    5765              :  * functions without relying on external build tools is impossible.
    5766              :  *
    5767              :  * The method is simple: Overallocate, manually align, and store the offset
    5768              :  * to the original behind the returned pointer.
    5769              :  *
    5770              :  * Align must be a power of 2 and 8 <= align <= 128.
    5771              :  */
    5772            7 : static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
    5773              : {
    5774            7 :     XXH_ASSERT(align <= 128 && align >= 8); /* range check */
    5775            7 :     XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
    5776            7 :     XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
    5777              :     {   /* Overallocate to make room for manual realignment and an offset byte */
    5778            7 :         xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
    5779            7 :         if (base != NULL) {
    5780              :             /*
    5781              :              * Get the offset needed to align this pointer.
    5782              :              *
    5783              :              * Even if the returned pointer is aligned, there will always be
    5784              :              * at least one byte to store the offset to the original pointer.
    5785              :              */
    5786            7 :             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
    5787              :             /* Add the offset for the now-aligned pointer */
    5788            7 :             xxh_u8* ptr = base + offset;
    5789              : 
    5790            7 :             XXH_ASSERT((size_t)ptr % align == 0);
    5791              : 
    5792              :             /* Store the offset immediately before the returned pointer. */
    5793            7 :             ptr[-1] = (xxh_u8)offset;
    5794            7 :             return ptr;
    5795              :         }
    5796            0 :         return NULL;
    5797              :     }
    5798              : }
    5799              : /*
    5800              :  * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
    5801              :  * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
    5802              :  */
    5803            7 : static void XXH_alignedFree(void* p)
    5804              : {
    5805            7 :     if (p != NULL) {
    5806            7 :         xxh_u8* ptr = (xxh_u8*)p;
    5807              :         /* Get the offset byte we added in XXH_malloc. */
    5808            7 :         xxh_u8 offset = ptr[-1];
    5809              :         /* Free the original malloc'd pointer */
    5810            7 :         xxh_u8* base = ptr - offset;
    5811            7 :         XXH_free(base);
    5812              :     }
    5813            7 : }
    5814              : /*! @ingroup XXH3_family */
    5815              : /*!
    5816              :  * @brief Allocate an @ref XXH3_state_t.
    5817              :  *
    5818              :  * Must be freed with XXH3_freeState().
    5819              :  * @return An allocated XXH3_state_t on success, `NULL` on failure.
    5820              :  */
    5821            7 : XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
    5822              : {
    5823            7 :     XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
    5824            7 :     if (state==NULL) return NULL;
    5825            7 :     XXH3_INITSTATE(state);
    5826            7 :     return state;
    5827              : }
    5828              : 
    5829              : /*! @ingroup XXH3_family */
    5830              : /*!
    5831              :  * @brief Frees an @ref XXH3_state_t.
    5832              :  *
    5833              :  * Must be allocated with XXH3_createState().
    5834              :  * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
    5835              :  * @return XXH_OK.
    5836              :  */
    5837            7 : XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
    5838              : {
    5839            7 :     XXH_alignedFree(statePtr);
    5840            7 :     return XXH_OK;
    5841              : }
    5842              : 
    5843              : /*! @ingroup XXH3_family */
    5844              : XXH_PUBLIC_API void
    5845            0 : XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
    5846              : {
    5847            0 :     XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
    5848            0 : }
    5849              : 
    5850              : static void
    5851            7 : XXH3_reset_internal(XXH3_state_t* statePtr,
    5852              :                     XXH64_hash_t seed,
    5853              :                     const void* secret, size_t secretSize)
    5854              : {
    5855            7 :     size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
    5856            7 :     size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
    5857            7 :     XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
    5858            7 :     XXH_ASSERT(statePtr != NULL);
    5859              :     /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
    5860            7 :     memset((char*)statePtr + initStart, 0, initLength);
    5861            7 :     statePtr->acc[0] = XXH_PRIME32_3;
    5862            7 :     statePtr->acc[1] = XXH_PRIME64_1;
    5863            7 :     statePtr->acc[2] = XXH_PRIME64_2;
    5864            7 :     statePtr->acc[3] = XXH_PRIME64_3;
    5865            7 :     statePtr->acc[4] = XXH_PRIME64_4;
    5866            7 :     statePtr->acc[5] = XXH_PRIME32_2;
    5867            7 :     statePtr->acc[6] = XXH_PRIME64_5;
    5868            7 :     statePtr->acc[7] = XXH_PRIME32_1;
    5869            7 :     statePtr->seed = seed;
    5870            7 :     statePtr->useSeed = (seed != 0);
    5871            7 :     statePtr->extSecret = (const unsigned char*)secret;
    5872            7 :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    5873            7 :     statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
    5874            7 :     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
    5875            7 : }
    5876              : 
    5877              : /*! @ingroup XXH3_family */
    5878              : XXH_PUBLIC_API XXH_errorcode
    5879            7 : XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
    5880              : {
    5881            7 :     if (statePtr == NULL) return XXH_ERROR;
    5882            7 :     XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
    5883            7 :     return XXH_OK;
    5884              : }
    5885              : 
    5886              : /*! @ingroup XXH3_family */
    5887              : XXH_PUBLIC_API XXH_errorcode
    5888            0 : XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
    5889              : {
    5890            0 :     if (statePtr == NULL) return XXH_ERROR;
    5891            0 :     XXH3_reset_internal(statePtr, 0, secret, secretSize);
    5892            0 :     if (secret == NULL) return XXH_ERROR;
    5893            0 :     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    5894            0 :     return XXH_OK;
    5895              : }
    5896              : 
    5897              : /*! @ingroup XXH3_family */
    5898              : XXH_PUBLIC_API XXH_errorcode
    5899            0 : XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
    5900              : {
    5901            0 :     if (statePtr == NULL) return XXH_ERROR;
    5902            0 :     if (seed==0) return XXH3_64bits_reset(statePtr);
    5903            0 :     if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
    5904            0 :         XXH3_initCustomSecret(statePtr->customSecret, seed);
    5905            0 :     XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
    5906            0 :     return XXH_OK;
    5907              : }
    5908              : 
    5909              : /*! @ingroup XXH3_family */
    5910              : XXH_PUBLIC_API XXH_errorcode
    5911            0 : XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
    5912              : {
    5913            0 :     if (statePtr == NULL) return XXH_ERROR;
    5914            0 :     if (secret == NULL) return XXH_ERROR;
    5915            0 :     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    5916            0 :     XXH3_reset_internal(statePtr, seed64, secret, secretSize);
    5917            0 :     statePtr->useSeed = 1; /* always, even if seed64==0 */
    5918            0 :     return XXH_OK;
    5919              : }
    5920              : 
    5921              : /*!
    5922              :  * @internal
    5923              :  * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
    5924              :  *
    5925              :  * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
    5926              :  *
    5927              :  * @param acc                Pointer to the 8 accumulator lanes
    5928              :  * @param nbStripesSoFarPtr  In/out pointer to the number of leftover stripes in the block*
    5929              :  * @param nbStripesPerBlock  Number of stripes in a block
    5930              :  * @param input              Input pointer
    5931              :  * @param nbStripes          Number of stripes to process
    5932              :  * @param secret             Secret pointer
    5933              :  * @param secretLimit        Offset of the last block in @p secret
    5934              :  * @param f_acc              Pointer to an XXH3_accumulate implementation
    5935              :  * @param f_scramble         Pointer to an XXH3_scrambleAcc implementation
    5936              :  * @return                   Pointer past the end of @p input after processing
    5937              :  */
    5938              : XXH_FORCE_INLINE const xxh_u8 *
    5939           10 : XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
    5940              :                     size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
    5941              :                     const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
    5942              :                     const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
    5943              :                     XXH3_f_accumulate f_acc,
    5944              :                     XXH3_f_scrambleAcc f_scramble)
    5945              : {
    5946           10 :     const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
    5947              :     /* Process full blocks */
    5948           10 :     if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
    5949              :         /* Process the initial partial block... */
    5950            4 :         size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
    5951              : 
    5952              :         do {
    5953              :             /* Accumulate and scramble */
    5954           49 :             f_acc(acc, input, initialSecret, nbStripesThisIter);
    5955           49 :             f_scramble(acc, secret + secretLimit);
    5956           49 :             input += nbStripesThisIter * XXH_STRIPE_LEN;
    5957           49 :             nbStripes -= nbStripesThisIter;
    5958              :             /* Then continue the loop with the full block size */
    5959           49 :             nbStripesThisIter = nbStripesPerBlock;
    5960           49 :             initialSecret = secret;
    5961           49 :         } while (nbStripes >= nbStripesPerBlock);
    5962            4 :         *nbStripesSoFarPtr = 0;
    5963              :     }
    5964              :     /* Process a partial block */
    5965           10 :     if (nbStripes > 0) {
    5966            5 :         f_acc(acc, input, initialSecret, nbStripes);
    5967            5 :         input += nbStripes * XXH_STRIPE_LEN;
    5968            5 :         *nbStripesSoFarPtr += nbStripes;
    5969              :     }
    5970              :     /* Return end pointer */
    5971           10 :     return input;
    5972              : }
    5973              : 
    5974              : #ifndef XXH3_STREAM_USE_STACK
    5975              : # if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
    5976              : #   define XXH3_STREAM_USE_STACK 1
    5977              : # endif
    5978              : #endif
    5979              : /*
    5980              :  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
    5981              :  */
    5982              : XXH_FORCE_INLINE XXH_errorcode
    5983            5 : XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
    5984              :             const xxh_u8* XXH_RESTRICT input, size_t len,
    5985              :             XXH3_f_accumulate f_acc,
    5986              :             XXH3_f_scrambleAcc f_scramble)
    5987              : {
    5988            5 :     if (input==NULL) {
    5989            0 :         XXH_ASSERT(len == 0);
    5990            0 :         return XXH_OK;
    5991              :     }
    5992              : 
    5993            5 :     XXH_ASSERT(state != NULL);
    5994            5 :     {   const xxh_u8* const bEnd = input + len;
    5995            5 :         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
    5996              : #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
    5997              :         /* For some reason, gcc and MSVC seem to suffer greatly
    5998              :          * when operating accumulators directly into state.
    5999              :          * Operating into stack space seems to enable proper optimization.
    6000              :          * clang, on the other hand, doesn't seem to need this trick */
    6001              :         XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
    6002            5 :         XXH_memcpy(acc, state->acc, sizeof(acc));
    6003              : #else
    6004              :         xxh_u64* XXH_RESTRICT const acc = state->acc;
    6005              : #endif
    6006            5 :         state->totalLen += len;
    6007            5 :         XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
    6008              : 
    6009              :         /* small input : just fill in tmp buffer */
    6010            5 :         if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
    6011            0 :             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
    6012            0 :             state->bufferedSize += (XXH32_hash_t)len;
    6013            0 :             return XXH_OK;
    6014              :         }
    6015              : 
    6016              :         /* total input is now > XXH3_INTERNALBUFFER_SIZE */
    6017              :         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
    6018              :         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
    6019              : 
    6020              :         /*
    6021              :          * Internal buffer is partially filled (always, except at beginning)
    6022              :          * Complete it, then consume it.
    6023              :          */
    6024            5 :         if (state->bufferedSize) {
    6025            0 :             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
    6026            0 :             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
    6027            0 :             input += loadSize;
    6028            0 :             XXH3_consumeStripes(acc,
    6029              :                                &state->nbStripesSoFar, state->nbStripesPerBlock,
    6030            0 :                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
    6031              :                                 secret, state->secretLimit,
    6032              :                                 f_acc, f_scramble);
    6033            0 :             state->bufferedSize = 0;
    6034              :         }
    6035            5 :         XXH_ASSERT(input < bEnd);
    6036            5 :         if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
    6037            5 :             size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
    6038            5 :             input = XXH3_consumeStripes(acc,
    6039              :                                        &state->nbStripesSoFar, state->nbStripesPerBlock,
    6040              :                                        input, nbStripes,
    6041              :                                        secret, state->secretLimit,
    6042              :                                        f_acc, f_scramble);
    6043            5 :             XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
    6044              : 
    6045              :         }
    6046              :         /* Some remaining input (always) : buffer it */
    6047            5 :         XXH_ASSERT(input < bEnd);
    6048            5 :         XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
    6049            5 :         XXH_ASSERT(state->bufferedSize == 0);
    6050            5 :         XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
    6051            5 :         state->bufferedSize = (XXH32_hash_t)(bEnd-input);
    6052              : #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
    6053              :         /* save stack accumulators into state */
    6054            5 :         XXH_memcpy(state->acc, acc, sizeof(acc));
    6055              : #endif
    6056              :     }
    6057              : 
    6058            5 :     return XXH_OK;
    6059              : }
    6060              : 
    6061              : /*! @ingroup XXH3_family */
    6062              : XXH_PUBLIC_API XXH_errorcode
    6063            5 : XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
    6064              : {
    6065            5 :     return XXH3_update(state, (const xxh_u8*)input, len,
    6066              :                        XXH3_accumulate, XXH3_scrambleAcc);
    6067              : }
    6068              : 
    6069              : 
    6070              : XXH_FORCE_INLINE void
    6071            5 : XXH3_digest_long (XXH64_hash_t* acc,
    6072              :                   const XXH3_state_t* state,
    6073              :                   const unsigned char* secret)
    6074              : {
    6075              :     xxh_u8 lastStripe[XXH_STRIPE_LEN];
    6076              :     const xxh_u8* lastStripePtr;
    6077              : 
    6078              :     /*
    6079              :      * Digest on a local copy. This way, the state remains unaltered, and it can
    6080              :      * continue ingesting more input afterwards.
    6081              :      */
    6082            5 :     XXH_memcpy(acc, state->acc, sizeof(state->acc));
    6083            5 :     if (state->bufferedSize >= XXH_STRIPE_LEN) {
    6084              :         /* Consume remaining stripes then point to remaining data in buffer */
    6085            5 :         size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
    6086            5 :         size_t nbStripesSoFar = state->nbStripesSoFar;
    6087            5 :         XXH3_consumeStripes(acc,
    6088            5 :                            &nbStripesSoFar, state->nbStripesPerBlock,
    6089            5 :                             state->buffer, nbStripes,
    6090            5 :                             secret, state->secretLimit,
    6091              :                             XXH3_accumulate, XXH3_scrambleAcc);
    6092            5 :         lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
    6093              :     } else {  /* bufferedSize < XXH_STRIPE_LEN */
    6094              :         /* Copy to temp buffer */
    6095            0 :         size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
    6096            0 :         XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
    6097            0 :         XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
    6098            0 :         XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
    6099            0 :         lastStripePtr = lastStripe;
    6100              :     }
    6101              :     /* Last stripe */
    6102            5 :     XXH3_accumulate_512(acc,
    6103              :                         lastStripePtr,
    6104            5 :                         secret + state->secretLimit - XXH_SECRET_LASTACC_START);
    6105            5 : }
    6106              : 
    6107              : /*! @ingroup XXH3_family */
    6108            0 : XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
    6109              : {
    6110            0 :     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
    6111            0 :     if (state->totalLen > XXH3_MIDSIZE_MAX) {
    6112              :         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
    6113            0 :         XXH3_digest_long(acc, state, secret);
    6114            0 :         return XXH3_mergeAccs(acc,
    6115              :                               secret + XXH_SECRET_MERGEACCS_START,
    6116            0 :                               (xxh_u64)state->totalLen * XXH_PRIME64_1);
    6117              :     }
    6118              :     /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
    6119            0 :     if (state->useSeed)
    6120            0 :         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
    6121            0 :     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
    6122            0 :                                   secret, state->secretLimit + XXH_STRIPE_LEN);
    6123              : }
    6124              : #endif /* !XXH_NO_STREAM */
    6125              : 
    6126              : 
    6127              : /* ==========================================
    6128              :  * XXH3 128 bits (a.k.a XXH128)
    6129              :  * ==========================================
    6130              :  * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
    6131              :  * even without counting the significantly larger output size.
    6132              :  *
    6133              :  * For example, extra steps are taken to avoid the seed-dependent collisions
    6134              :  * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
    6135              :  *
    6136              :  * This strength naturally comes at the cost of some speed, especially on short
    6137              :  * lengths. Note that longer hashes are about as fast as the 64-bit version
    6138              :  * due to it using only a slight modification of the 64-bit loop.
    6139              :  *
    6140              :  * XXH128 is also more oriented towards 64-bit machines. It is still extremely
    6141              :  * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
    6142              :  */
    6143              : 
    6144              : XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
    6145            0 : XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    6146              : {
    6147              :     /* A doubled version of 1to3_64b with different constants. */
    6148            0 :     XXH_ASSERT(input != NULL);
    6149            0 :     XXH_ASSERT(1 <= len && len <= 3);
    6150            0 :     XXH_ASSERT(secret != NULL);
    6151              :     /*
    6152              :      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
    6153              :      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
    6154              :      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
    6155              :      */
    6156            0 :     {   xxh_u8 const c1 = input[0];
    6157            0 :         xxh_u8 const c2 = input[len >> 1];
    6158            0 :         xxh_u8 const c3 = input[len - 1];
    6159            0 :         xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
    6160            0 :                                 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
    6161            0 :         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
    6162            0 :         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
    6163            0 :         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
    6164            0 :         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
    6165            0 :         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
    6166              :         XXH128_hash_t h128;
    6167            0 :         h128.low64  = XXH64_avalanche(keyed_lo);
    6168            0 :         h128.high64 = XXH64_avalanche(keyed_hi);
    6169            0 :         return h128;
    6170              :     }
    6171              : }
    6172              : 
    6173              : XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
    6174            0 : XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    6175              : {
    6176            0 :     XXH_ASSERT(input != NULL);
    6177            0 :     XXH_ASSERT(secret != NULL);
    6178            0 :     XXH_ASSERT(4 <= len && len <= 8);
    6179            0 :     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
    6180            0 :     {   xxh_u32 const input_lo = XXH_readLE32(input);
    6181            0 :         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
    6182            0 :         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
    6183            0 :         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
    6184            0 :         xxh_u64 const keyed = input_64 ^ bitflip;
    6185              : 
    6186              :         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
    6187            0 :         XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
    6188              : 
    6189            0 :         m128.high64 += (m128.low64 << 1);
    6190            0 :         m128.low64  ^= (m128.high64 >> 3);
    6191              : 
    6192            0 :         m128.low64   = XXH_xorshift64(m128.low64, 35);
    6193            0 :         m128.low64  *= PRIME_MX2;
    6194            0 :         m128.low64   = XXH_xorshift64(m128.low64, 28);
    6195            0 :         m128.high64  = XXH3_avalanche(m128.high64);
    6196            0 :         return m128;
    6197              :     }
    6198              : }
    6199              : 
    6200              : XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
    6201            0 : XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    6202              : {
    6203            0 :     XXH_ASSERT(input != NULL);
    6204            0 :     XXH_ASSERT(secret != NULL);
    6205            0 :     XXH_ASSERT(9 <= len && len <= 16);
    6206            0 :     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
    6207            0 :         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
    6208            0 :         xxh_u64 const input_lo = XXH_readLE64(input);
    6209            0 :         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
    6210            0 :         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
    6211              :         /*
    6212              :          * Put len in the middle of m128 to ensure that the length gets mixed to
    6213              :          * both the low and high bits in the 128x64 multiply below.
    6214              :          */
    6215            0 :         m128.low64 += (xxh_u64)(len - 1) << 54;
    6216            0 :         input_hi   ^= bitfliph;
    6217              :         /*
    6218              :          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
    6219              :          * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
    6220              :          * the high 64 bits of m128.
    6221              :          *
    6222              :          * The best approach to this operation is different on 32-bit and 64-bit.
    6223              :          */
    6224              :         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
    6225              :             /*
    6226              :              * 32-bit optimized version, which is more readable.
    6227              :              *
    6228              :              * On 32-bit, it removes an ADC and delays a dependency between the two
    6229              :              * halves of m128.high64, but it generates an extra mask on 64-bit.
    6230              :              */
    6231              :             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
    6232              :         } else {
    6233              :             /*
    6234              :              * 64-bit optimized (albeit more confusing) version.
    6235              :              *
    6236              :              * Uses some properties of addition and multiplication to remove the mask:
    6237              :              *
    6238              :              * Let:
    6239              :              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
    6240              :              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
    6241              :              *    c = XXH_PRIME32_2
    6242              :              *
    6243              :              *    a + (b * c)
    6244              :              * Inverse Property: x + y - x == y
    6245              :              *    a + (b * (1 + c - 1))
    6246              :              * Distributive Property: x * (y + z) == (x * y) + (x * z)
    6247              :              *    a + (b * 1) + (b * (c - 1))
    6248              :              * Identity Property: x * 1 == x
    6249              :              *    a + b + (b * (c - 1))
    6250              :              *
    6251              :              * Substitute a, b, and c:
    6252              :              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
    6253              :              *
    6254              :              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
    6255              :              *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
    6256              :              */
    6257            0 :             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
    6258              :         }
    6259              :         /* m128 ^= XXH_swap64(m128 >> 64); */
    6260            0 :         m128.low64  ^= XXH_swap64(m128.high64);
    6261              : 
    6262              :         {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
    6263            0 :             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
    6264            0 :             h128.high64 += m128.high64 * XXH_PRIME64_2;
    6265              : 
    6266            0 :             h128.low64   = XXH3_avalanche(h128.low64);
    6267            0 :             h128.high64  = XXH3_avalanche(h128.high64);
    6268            0 :             return h128;
    6269              :     }   }
    6270              : }
    6271              : 
    6272              : /*
    6273              :  * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
    6274              :  */
    6275              : XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
    6276            2 : XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
    6277              : {
    6278            2 :     XXH_ASSERT(len <= 16);
    6279            2 :     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
    6280            2 :         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
    6281            2 :         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
    6282              :         {   XXH128_hash_t h128;
    6283            2 :             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
    6284            2 :             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
    6285            2 :             h128.low64 = XXH64_avalanche(seed ^ bitflipl);
    6286            2 :             h128.high64 = XXH64_avalanche( seed ^ bitfliph);
    6287            2 :             return h128;
    6288              :     }   }
    6289              : }
    6290              : 
    6291              : /*
    6292              :  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
    6293              :  */
    6294              : XXH_FORCE_INLINE XXH128_hash_t
    6295            0 : XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
    6296              :               const xxh_u8* secret, XXH64_hash_t seed)
    6297              : {
    6298            0 :     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
    6299            0 :     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
    6300            0 :     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
    6301            0 :     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
    6302            0 :     return acc;
    6303              : }
    6304              : 
    6305              : 
    6306              : XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
    6307            0 : XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
    6308              :                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
    6309              :                       XXH64_hash_t seed)
    6310              : {
    6311            0 :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    6312            0 :     XXH_ASSERT(16 < len && len <= 128);
    6313              : 
    6314              :     {   XXH128_hash_t acc;
    6315            0 :         acc.low64 = len * XXH_PRIME64_1;
    6316            0 :         acc.high64 = 0;
    6317              : 
    6318              : #if XXH_SIZE_OPT >= 1
    6319              :         {
    6320              :             /* Smaller, but slightly slower. */
    6321              :             unsigned int i = (unsigned int)(len - 1) / 32;
    6322              :             do {
    6323              :                 acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
    6324              :             } while (i-- != 0);
    6325              :         }
    6326              : #else
    6327            0 :         if (len > 32) {
    6328            0 :             if (len > 64) {
    6329            0 :                 if (len > 96) {
    6330            0 :                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
    6331              :                 }
    6332            0 :                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
    6333              :             }
    6334            0 :             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
    6335              :         }
    6336            0 :         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
    6337              : #endif
    6338              :         {   XXH128_hash_t h128;
    6339            0 :             h128.low64  = acc.low64 + acc.high64;
    6340            0 :             h128.high64 = (acc.low64    * XXH_PRIME64_1)
    6341            0 :                         + (acc.high64   * XXH_PRIME64_4)
    6342            0 :                         + ((len - seed) * XXH_PRIME64_2);
    6343            0 :             h128.low64  = XXH3_avalanche(h128.low64);
    6344            0 :             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
    6345            0 :             return h128;
    6346              :         }
    6347              :     }
    6348              : }
    6349              : 
    6350              : XXH_NO_INLINE XXH_PUREF XXH128_hash_t
    6351            0 : XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
    6352              :                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
    6353              :                        XXH64_hash_t seed)
    6354              : {
    6355            0 :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    6356            0 :     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
    6357              : 
    6358              :     {   XXH128_hash_t acc;
    6359              :         unsigned i;
    6360            0 :         acc.low64 = len * XXH_PRIME64_1;
    6361            0 :         acc.high64 = 0;
    6362              :         /*
    6363              :          *  We set as `i` as offset + 32. We do this so that unchanged
    6364              :          * `len` can be used as upper bound. This reaches a sweet spot
    6365              :          * where both x86 and aarch64 get simple agen and good codegen
    6366              :          * for the loop.
    6367              :          */
    6368            0 :         for (i = 32; i < 160; i += 32) {
    6369            0 :             acc = XXH128_mix32B(acc,
    6370            0 :                                 input  + i - 32,
    6371            0 :                                 input  + i - 16,
    6372            0 :                                 secret + i - 32,
    6373              :                                 seed);
    6374              :         }
    6375            0 :         acc.low64 = XXH3_avalanche(acc.low64);
    6376            0 :         acc.high64 = XXH3_avalanche(acc.high64);
    6377              :         /*
    6378              :          * NB: `i <= len` will duplicate the last 32-bytes if
    6379              :          * len % 32 was zero. This is an unfortunate necessity to keep
    6380              :          * the hash result stable.
    6381              :          */
    6382            0 :         for (i=160; i <= len; i += 32) {
    6383            0 :             acc = XXH128_mix32B(acc,
    6384            0 :                                 input + i - 32,
    6385            0 :                                 input + i - 16,
    6386            0 :                                 secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
    6387              :                                 seed);
    6388              :         }
    6389              :         /* last bytes */
    6390            0 :         acc = XXH128_mix32B(acc,
    6391            0 :                             input + len - 16,
    6392            0 :                             input + len - 32,
    6393              :                             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
    6394              :                             (XXH64_hash_t)0 - seed);
    6395              : 
    6396              :         {   XXH128_hash_t h128;
    6397            0 :             h128.low64  = acc.low64 + acc.high64;
    6398            0 :             h128.high64 = (acc.low64    * XXH_PRIME64_1)
    6399            0 :                         + (acc.high64   * XXH_PRIME64_4)
    6400            0 :                         + ((len - seed) * XXH_PRIME64_2);
    6401            0 :             h128.low64  = XXH3_avalanche(h128.low64);
    6402            0 :             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
    6403            0 :             return h128;
    6404              :         }
    6405              :     }
    6406              : }
    6407              : 
    6408              : XXH_FORCE_INLINE XXH128_hash_t
    6409           98 : XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
    6410              :                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
    6411              :                             XXH3_f_accumulate f_acc,
    6412              :                             XXH3_f_scrambleAcc f_scramble)
    6413              : {
    6414           98 :     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
    6415              : 
    6416           98 :     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
    6417              : 
    6418              :     /* converge into final hash */
    6419              :     XXH_STATIC_ASSERT(sizeof(acc) == 64);
    6420           98 :     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    6421              :     {   XXH128_hash_t h128;
    6422          196 :         h128.low64  = XXH3_mergeAccs(acc,
    6423              :                                      secret + XXH_SECRET_MERGEACCS_START,
    6424           98 :                                      (xxh_u64)len * XXH_PRIME64_1);
    6425          196 :         h128.high64 = XXH3_mergeAccs(acc,
    6426              :                                      secret + secretSize
    6427           98 :                                             - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
    6428           98 :                                      ~((xxh_u64)len * XXH_PRIME64_2));
    6429           98 :         return h128;
    6430              :     }
    6431              : }
    6432              : 
    6433              : /*
    6434              :  * It's important for performance that XXH3_hashLong() is not inlined.
    6435              :  */
    6436              : XXH_NO_INLINE XXH_PUREF XXH128_hash_t
    6437           98 : XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
    6438              :                            XXH64_hash_t seed64,
    6439              :                            const void* XXH_RESTRICT secret, size_t secretLen)
    6440              : {
    6441              :     (void)seed64; (void)secret; (void)secretLen;
    6442           98 :     return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
    6443              :                                        XXH3_accumulate, XXH3_scrambleAcc);
    6444              : }
    6445              : 
    6446              : /*
    6447              :  * It's important for performance to pass @p secretLen (when it's static)
    6448              :  * to the compiler, so that it can properly optimize the vectorized loop.
    6449              :  *
    6450              :  * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
    6451              :  * breaks -Og, this is XXH_NO_INLINE.
    6452              :  */
    6453              : XXH3_WITH_SECRET_INLINE XXH128_hash_t
    6454            0 : XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
    6455              :                               XXH64_hash_t seed64,
    6456              :                               const void* XXH_RESTRICT secret, size_t secretLen)
    6457              : {
    6458              :     (void)seed64;
    6459            0 :     return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
    6460              :                                        XXH3_accumulate, XXH3_scrambleAcc);
    6461              : }
    6462              : 
    6463              : XXH_FORCE_INLINE XXH128_hash_t
    6464            0 : XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
    6465              :                                 XXH64_hash_t seed64,
    6466              :                                 XXH3_f_accumulate f_acc,
    6467              :                                 XXH3_f_scrambleAcc f_scramble,
    6468              :                                 XXH3_f_initCustomSecret f_initSec)
    6469              : {
    6470            0 :     if (seed64 == 0)
    6471            0 :         return XXH3_hashLong_128b_internal(input, len,
    6472              :                                            XXH3_kSecret, sizeof(XXH3_kSecret),
    6473              :                                            f_acc, f_scramble);
    6474              :     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
    6475            0 :         f_initSec(secret, seed64);
    6476            0 :         return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
    6477              :                                            f_acc, f_scramble);
    6478              :     }
    6479              : }
    6480              : 
    6481              : /*
    6482              :  * It's important for performance that XXH3_hashLong is not inlined.
    6483              :  */
    6484              : XXH_NO_INLINE XXH128_hash_t
    6485            0 : XXH3_hashLong_128b_withSeed(const void* input, size_t len,
    6486              :                             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
    6487              : {
    6488              :     (void)secret; (void)secretLen;
    6489            0 :     return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
    6490              :                 XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
    6491              : }
    6492              : 
    6493              : typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
    6494              :                                             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
    6495              : 
    6496              : XXH_FORCE_INLINE XXH128_hash_t
    6497          100 : XXH3_128bits_internal(const void* input, size_t len,
    6498              :                       XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
    6499              :                       XXH3_hashLong128_f f_hl128)
    6500              : {
    6501          100 :     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
    6502              :     /*
    6503              :      * If an action is to be taken if `secret` conditions are not respected,
    6504              :      * it should be done here.
    6505              :      * For now, it's a contract pre-condition.
    6506              :      * Adding a check and a branch here would cost performance at every hash.
    6507              :      */
    6508          100 :     if (len <= 16)
    6509            2 :         return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
    6510           98 :     if (len <= 128)
    6511            0 :         return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    6512           98 :     if (len <= XXH3_MIDSIZE_MAX)
    6513            0 :         return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    6514           98 :     return f_hl128(input, len, seed64, secret, secretLen);
    6515              : }
    6516              : 
    6517              : 
    6518              : /* ===   Public XXH128 API   === */
    6519              : 
    6520              : /*! @ingroup XXH3_family */
    6521           98 : XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
    6522              : {
    6523           98 :     return XXH3_128bits_internal(input, len, 0,
    6524              :                                  XXH3_kSecret, sizeof(XXH3_kSecret),
    6525              :                                  XXH3_hashLong_128b_default);
    6526              : }
    6527              : 
    6528              : /*! @ingroup XXH3_family */
    6529              : XXH_PUBLIC_API XXH128_hash_t
    6530            2 : XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
    6531              : {
    6532            2 :     return XXH3_128bits_internal(input, len, 0,
    6533              :                                  (const xxh_u8*)secret, secretSize,
    6534              :                                  XXH3_hashLong_128b_withSecret);
    6535              : }
    6536              : 
    6537              : /*! @ingroup XXH3_family */
    6538              : XXH_PUBLIC_API XXH128_hash_t
    6539            0 : XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
    6540              : {
    6541            0 :     return XXH3_128bits_internal(input, len, seed,
    6542              :                                  XXH3_kSecret, sizeof(XXH3_kSecret),
    6543              :                                  XXH3_hashLong_128b_withSeed);
    6544              : }
    6545              : 
    6546              : /*! @ingroup XXH3_family */
    6547              : XXH_PUBLIC_API XXH128_hash_t
    6548            0 : XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
    6549              : {
    6550            0 :     if (len <= XXH3_MIDSIZE_MAX)
    6551            0 :         return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
    6552            0 :     return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
    6553              : }
    6554              : 
    6555              : /*! @ingroup XXH3_family */
    6556              : XXH_PUBLIC_API XXH128_hash_t
    6557            0 : XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
    6558              : {
    6559            0 :     return XXH3_128bits_withSeed(input, len, seed);
    6560              : }
    6561              : 
    6562              : 
    6563              : /* ===   XXH3 128-bit streaming   === */
    6564              : #ifndef XXH_NO_STREAM
    6565              : /*
    6566              :  * All initialization and update functions are identical to 64-bit streaming variant.
    6567              :  * The only difference is the finalization routine.
    6568              :  */
    6569              : 
    6570              : /*! @ingroup XXH3_family */
    6571              : XXH_PUBLIC_API XXH_errorcode
    6572            7 : XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
    6573              : {
    6574            7 :     return XXH3_64bits_reset(statePtr);
    6575              : }
    6576              : 
    6577              : /*! @ingroup XXH3_family */
    6578              : XXH_PUBLIC_API XXH_errorcode
    6579            0 : XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
    6580              : {
    6581            0 :     return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
    6582              : }
    6583              : 
    6584              : /*! @ingroup XXH3_family */
    6585              : XXH_PUBLIC_API XXH_errorcode
    6586            0 : XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
    6587              : {
    6588            0 :     return XXH3_64bits_reset_withSeed(statePtr, seed);
    6589              : }
    6590              : 
    6591              : /*! @ingroup XXH3_family */
    6592              : XXH_PUBLIC_API XXH_errorcode
    6593            0 : XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
    6594              : {
    6595            0 :     return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
    6596              : }
    6597              : 
    6598              : /*! @ingroup XXH3_family */
    6599              : XXH_PUBLIC_API XXH_errorcode
    6600            5 : XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
    6601              : {
    6602            5 :     return XXH3_64bits_update(state, input, len);
    6603              : }
    6604              : 
    6605              : /*! @ingroup XXH3_family */
    6606            7 : XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
    6607              : {
    6608            7 :     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
    6609            7 :     if (state->totalLen > XXH3_MIDSIZE_MAX) {
    6610              :         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
    6611            5 :         XXH3_digest_long(acc, state, secret);
    6612            5 :         XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    6613              :         {   XXH128_hash_t h128;
    6614           10 :             h128.low64  = XXH3_mergeAccs(acc,
    6615              :                                          secret + XXH_SECRET_MERGEACCS_START,
    6616            5 :                                          (xxh_u64)state->totalLen * XXH_PRIME64_1);
    6617           10 :             h128.high64 = XXH3_mergeAccs(acc,
    6618            5 :                                          secret + state->secretLimit + XXH_STRIPE_LEN
    6619            5 :                                                 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
    6620            5 :                                          ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
    6621            5 :             return h128;
    6622              :         }
    6623              :     }
    6624              :     /* len <= XXH3_MIDSIZE_MAX : short code */
    6625            2 :     if (state->seed)
    6626            0 :         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
    6627            2 :     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
    6628            2 :                                    secret, state->secretLimit + XXH_STRIPE_LEN);
    6629              : }
    6630              : #endif /* !XXH_NO_STREAM */
    6631              : /* 128-bit utility functions */
    6632              : 
    6633              : #include <string.h>   /* memcmp, memcpy */
    6634              : 
    6635              : /* return : 1 is equal, 0 if different */
    6636              : /*! @ingroup XXH3_family */
    6637            0 : XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
    6638              : {
    6639              :     /* note : XXH128_hash_t is compact, it has no padding byte */
    6640            0 :     return !(memcmp(&h1, &h2, sizeof(h1)));
    6641              : }
    6642              : 
    6643              : /* This prototype is compatible with stdlib's qsort().
    6644              :  * @return : >0 if *h128_1  > *h128_2
    6645              :  *           <0 if *h128_1  < *h128_2
    6646              :  *           =0 if *h128_1 == *h128_2  */
    6647              : /*! @ingroup XXH3_family */
    6648            0 : XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
    6649              : {
    6650            0 :     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
    6651            0 :     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
    6652            0 :     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
    6653              :     /* note : bets that, in most cases, hash values are different */
    6654            0 :     if (hcmp) return hcmp;
    6655            0 :     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
    6656              : }
    6657              : 
    6658              : 
    6659              : /*======   Canonical representation   ======*/
    6660              : /*! @ingroup XXH3_family */
    6661              : XXH_PUBLIC_API void
    6662            0 : XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
    6663              : {
    6664              :     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
    6665              :     if (XXH_CPU_LITTLE_ENDIAN) {
    6666            0 :         hash.high64 = XXH_swap64(hash.high64);
    6667            0 :         hash.low64  = XXH_swap64(hash.low64);
    6668              :     }
    6669            0 :     XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
    6670            0 :     XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
    6671            0 : }
    6672              : 
    6673              : /*! @ingroup XXH3_family */
    6674              : XXH_PUBLIC_API XXH128_hash_t
    6675            0 : XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
    6676              : {
    6677              :     XXH128_hash_t h;
    6678            0 :     h.high64 = XXH_readBE64(src);
    6679            0 :     h.low64  = XXH_readBE64(src->digest + 8);
    6680            0 :     return h;
    6681              : }
    6682              : 
    6683              : 
    6684              : 
    6685              : /* ==========================================
    6686              :  * Secret generators
    6687              :  * ==========================================
    6688              :  */
    6689              : #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
    6690              : 
    6691            0 : XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
    6692              : {
    6693            0 :     XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
    6694            0 :     XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
    6695            0 : }
    6696              : 
    6697              : /*! @ingroup XXH3_family */
    6698              : XXH_PUBLIC_API XXH_errorcode
    6699            0 : XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
    6700              : {
    6701              : #if (XXH_DEBUGLEVEL >= 1)
    6702              :     XXH_ASSERT(secretBuffer != NULL);
    6703              :     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    6704              : #else
    6705              :     /* production mode, assert() are disabled */
    6706            0 :     if (secretBuffer == NULL) return XXH_ERROR;
    6707            0 :     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    6708              : #endif
    6709              : 
    6710            0 :     if (customSeedSize == 0) {
    6711            0 :         customSeed = XXH3_kSecret;
    6712            0 :         customSeedSize = XXH_SECRET_DEFAULT_SIZE;
    6713              :     }
    6714              : #if (XXH_DEBUGLEVEL >= 1)
    6715              :     XXH_ASSERT(customSeed != NULL);
    6716              : #else
    6717            0 :     if (customSeed == NULL) return XXH_ERROR;
    6718              : #endif
    6719              : 
    6720              :     /* Fill secretBuffer with a copy of customSeed - repeat as needed */
    6721            0 :     {   size_t pos = 0;
    6722            0 :         while (pos < secretSize) {
    6723            0 :             size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
    6724            0 :             memcpy((char*)secretBuffer + pos, customSeed, toCopy);
    6725            0 :             pos += toCopy;
    6726              :     }   }
    6727              : 
    6728            0 :     {   size_t const nbSeg16 = secretSize / 16;
    6729              :         size_t n;
    6730              :         XXH128_canonical_t scrambler;
    6731            0 :         XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
    6732            0 :         for (n=0; n<nbSeg16; n++) {
    6733            0 :             XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
    6734            0 :             XXH3_combine16((char*)secretBuffer + n*16, h128);
    6735              :         }
    6736              :         /* last segment */
    6737            0 :         XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
    6738              :     }
    6739            0 :     return XXH_OK;
    6740              : }
    6741              : 
    6742              : /*! @ingroup XXH3_family */
    6743              : XXH_PUBLIC_API void
    6744            0 : XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
    6745              : {
    6746              :     XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
    6747            0 :     XXH3_initCustomSecret(secret, seed);
    6748            0 :     XXH_ASSERT(secretBuffer != NULL);
    6749            0 :     memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
    6750            0 : }
    6751              : 
    6752              : 
    6753              : 
    6754              : /* Pop our optimization override from above */
    6755              : #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
    6756              :   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
    6757              :   && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
    6758              : #  pragma GCC pop_options
    6759              : #endif
    6760              : 
    6761              : #endif  /* XXH_NO_LONG_LONG */
    6762              : 
    6763              : #endif  /* XXH_NO_XXH3 */
    6764              : 
    6765              : /*!
    6766              :  * @}
    6767              :  */
    6768              : #endif  /* XXH_IMPLEMENTATION */
    6769              : 
    6770              : 
    6771              : #if defined (__cplusplus)
    6772              : } /* extern "C" */
    6773              : #endif
        

Generated by: LCOV version 2.0-1